一 基本概述
esp8266的SPI代码流程非常的清晰,主要有三部分构成: spi_init 配置 spi_trans 配置 data_transfer 配置这三块组成。
在这里,笔者就针对spi的这些流程,做一个简单的源码分析。
一 初始化源码分析
spi 源码初始化函数中,主要是完成软硬件的接口配置和参数配置,我们看一下这里面都做了一些什么呢?
虽然代码不少,但是一个函数的核心代码也就那么多:
spi_set_event_callback(host, &config->event_cb); spi_set_mode(host, &config->mode); spi_set_interface(host, &config->interface); spi_set_clk_div(host, &config->clk_div); spi_set_dummy(host, &dummy_bitlen); spi_set_intr_enable(host, &config->intr_enable); spi_intr_register(spi_intr, NULL); spi_intr_enable();
这代码逻辑很清楚了:
spi_set_mode是设置是master模式还是slave模式。这里面主要涉两种模式的参数配置,记得改参数一定要用这两个啊:
核心代码如下所示:
if (SPI_MASTER_MODE == *mode) { // Set to Master mode SPI[host]->pin.slave_mode = false; SPI[host]->slave.slave_mode = false; // Master uses the entire hardware buffer to improve transmission speed SPI[host]->user.usr_mosi_highpart = false; SPI[host]->user.usr_miso_highpart = false; SPI[host]->user.usr_mosi = true; // Create hardware cs in advance SPI[host]->user.cs_setup = true; // Hysteresis to keep hardware cs SPI[host]->user.cs_hold = true; SPI[host]->user.duplex = true; SPI[host]->user.ck_i_edge = true; SPI[host]->ctrl2.mosi_delay_num = 0; SPI[host]->ctrl2.miso_delay_num = 1; } else { // Set to Slave mode SPI[host]->pin.slave_mode = true; SPI[host]->slave.slave_mode = true; SPI[host]->user.usr_miso_highpart = true; // MOSI signals are delayed by APB_CLK(80MHz) mosi_delay_num cycles SPI[host]->ctrl2.mosi_delay_num = 2; SPI[host]->ctrl2.miso_delay_num = 0; SPI[host]->slave.wr_rd_sta_en = 1; SPI[host]->slave1.status_bitlen = 31; SPI[host]->slave1.status_readback = 0; // Put the slave's miso on the highpart, so you can only send 256bits // In Slave mode miso, mosi length is the same SPI[host]->slave1.buf_bitlen = 255; SPI[host]->cmd.usr = 1; }
接下来是软硬件接口的配置,不同模式下接口参数不同,GPIO是不变的:
switch (host) { case CSPI_HOST: { // Initialize SPI IO PIN_PULLUP_EN(PERIPHS_IO_MUX_SD_CLK_U); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SPICLK); if (interface->mosi_en) { PIN_PULLUP_EN(PERIPHS_IO_MUX_SD_DATA1_U); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA1_U, FUNC_SPID_MOSI); } if (interface->miso_en) { PIN_PULLUP_EN(PERIPHS_IO_MUX_SD_DATA0_U); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA0_U, FUNC_SPIQ_MISO); } if (interface->cs_en) { PIN_PULLUP_EN(PERIPHS_IO_MUX_SD_CMD_U); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CMD_U, FUNC_SPICS0); } } break; case HSPI_HOST: { // Initialize HSPI IO PIN_PULLUP_EN(PERIPHS_IO_MUX_MTMS_U); PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTMS_U, FUNC_HSPI_CLK); //GPIO14 is SPI CLK pin (Clock) if (interface->mosi_en) { PIN_PULLUP_EN(PERIPHS_IO_MUX_MTCK_U); PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_HSPID_MOSI); //GPIO13 is SPI MOSI pin (Master Data Out) } if (interface->miso_en) { PIN_PULLUP_EN(PERIPHS_IO_MUX_MTDI_U); PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U, FUNC_HSPIQ_MISO); //GPIO12 is SPI MISO pin (Master Data In) } if (interface->cs_en) { PIN_PULLUP_EN(PERIPHS_IO_MUX_MTDO_U); PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_HSPI_CS0); } } break; }
接下来是分频系数的设置,这个岁spi的速影响特别大,记住,spi的速率就靠它了:
esp_err_t spi_set_clk_div(spi_host_t host, spi_clk_div_t *clk_div)
switch (host) { case CSPI_HOST: { SET_PERI_REG_MASK(PERIPHS_IO_MUX_CONF_U, SPI0_CLK_EQU_SYS_CLK); } break; case HSPI_HOST: { SET_PERI_REG_MASK(PERIPHS_IO_MUX_CONF_U, SPI1_CLK_EQU_SYS_CLK); } break; } SPI[host]->clock.clk_equ_sysclk = true;
接下来就是一些简单的流程了,就是配置中断并使能:
spi_set_intr_enable(host, &config->intr_enable);
spi_intr_register(spi_intr, NULL);
spi_intr_enable();
二 配置源码分析
在配置源码中,最核心的函数就是:spi_trans(HSPI_HOST, trans);
在这个函数中,都做了一些什么呢?
if (SPI_MASTER_MODE == spi_object[host]->mode) { ret = spi_master_trans(host, trans); } else { ret = spi_slave_trans(host, trans); }
看上面源码,就知道了,所有的核心处理都在函数:spi_xxx_trans里面了。
接下来,我们看这个函数都干了啥:
// Set the cmd length and transfer cmd if (trans.bits.cmd && trans.cmd) { SPI[host]->user.usr_command = 1; SPI[host]->user2.usr_command_bitlen = trans.bits.cmd - 1; SPI[host]->user2.usr_command_value = *trans.cmd; } else { SPI[host]->user.usr_command = 0; } // Set addr length and transfer addr if (trans.bits.addr && trans.addr) { SPI[host]->user.usr_addr = 1; SPI[host]->user1.usr_addr_bitlen = trans.bits.addr - 1; SPI[host]->addr = *trans.addr; } else { SPI[host]->user.usr_addr = 0; } // Set mosi length and transmit mosi if (trans.bits.mosi && trans.mosi) { SPI[host]->user.usr_mosi = 1; SPI[host]->user1.usr_mosi_bitlen = trans.bits.mosi - 1; for (x = 0; x < trans.bits.mosi; x += 32) { y = x / 32; SPI[host]->data_buf[y] = trans.mosi[y]; } } else { SPI[host]->user.usr_mosi = 0; } // Set the length of the miso if (trans.bits.miso && trans.miso) { SPI[host]->user.usr_miso = 1; SPI[host]->user1.usr_miso_bitlen = trans.bits.miso - 1; } else { SPI[host]->user.usr_miso = 0; } // Call the event callback function to send a transfer start event if (spi_object[host]->event_cb) { spi_object[host]->event_cb(SPI_TRANS_START_EVENT, NULL); } // Start transmission SPI[host]->cmd.usr = 1;
大致看一下,就知道了,这个函数就是做数据传输配置的。
三 数据传输源码分析
在数据接收和发送里面,这有两个东西特别关键:
为了节省buffer空间和提升速率,这里使用了ring_buffer,这个在嵌入式中是一个非常实用的技巧,笔者见过几个系统都用过,非常的不错,有兴趣的同学可以学着写一个。
// Write data to the ESP8266 Slave use "SPI_MASTER_WRITE_DATA_TO_SLAVE_CMD" cmd trans.cmd = &cmd; trans.addr = &addr; trans.mosi = write_data; cmd = SPI_MASTER_WRITE_DATA_TO_SLAVE_CMD; addr = 0; write_data[0] = 1; write_data[1] = 0x11111111; write_data[2] = 0x22222222; write_data[3] = 0x33333333; write_data[4] = 0x44444444; write_data[5] = 0x55555555; write_data[6] = 0x66666666; write_data[7] = 0x77777777; while (1) { gettimeofday(&now, NULL); time_start = now.tv_usec; for (x = 0;x < 100;x++) { spi_trans(HSPI_HOST, trans); write_data[0]++; } gettimeofday(&now, NULL); time_end = now.tv_usec; ESP_LOGI(TAG, "Master wrote 3200 bytes in %d us", (int)(time_end - time_start)); vTaskDelay(100 / portTICK_RATE_MS); }
其实,这段代码不是很复杂,估计很多人都能看懂的,真是代码写的特别好。
四 总结感想
SPI接口应用实在是太广泛了,后来笔者使用两个系统对通,验证基本没啥问题,后面就是上一下图了,接下来,就可以上我们的牛逼系统了,wifi图传,就看同的速率了。
硬件连线:
master log:
slave log: