• Python并发编程之线程池/进程池--concurrent.futures模块


    一、关于concurrent.futures模块

      

      Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间。但从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对编写线程池/进程池提供了直接的支持。

    1.Executor和Future:

      concurrent.futures模块的基础是Exectuor,Executor是一个抽象类,它不能被直接使用。但是它提供的两个子类ThreadPoolExecutor和ProcessPoolExecutor却是非常有用,顾名思义两者分别被用来创建线程池和进程池的代码。我们可以将相应的tasks直接放入线程池/进程池,不需要维护Queue来操心死锁的问题,线程池/进程池会自动帮我们调度。

      Future这个概念相信有java和nodejs下编程经验的朋友肯定不陌生了,你可以把它理解为一个在未来完成的操作,这是异步编程的基础,传统编程模式下比如我们操作queue.get的时候,在等待返回结果之前会产生阻塞,cpu不能让出来做其他事情,而Future的引入帮助我们在等待的这段时间可以完成其他的操作。

      p.s: 如果你依然在坚守Python2.x,请先安装futures模块。

    pip install futures 

    二、操作线程池/进程池

    1.使用submit来操作线程池/进程池:

    # 线程池:
    from concurrent.futures import ThreadPoolExecutor
    import urllib.request
    URLS = ['http://www.163.com', 'https://www.baidu.com/', 'https://github.com/']
    def load_url(url):
        with urllib.request.urlopen(url, timeout=60) as conn:
            print('%r page is %d bytes' % (url, len(conn.read())))
    
    executor = ThreadPoolExecutor(max_workers=3)
    
    for url in URLS:
        future = executor.submit(load_url,url)
        print(future.done())
    
    print('主线程')
    
    # 运行结果:
    False
    False
    False
    主线程
    'https://www.baidu.com/' page is 227 bytes
    'http://www.163.com' page is 662047 bytes
    'https://github.com/' page is 54629 bytes

      我们根据运行结果来分析一下。我们使用submit方法来往线程池中加入一个task,submit返回一个Future对象,对于Future对象可以简单地理解为一个在未来完成的操作。由于线程池异步提交了任务,主线程并不会等待线程池里创建的线程执行完毕,所以执行了print('主线程'),相应的线程池中创建的线程并没有执行完毕,故future.done()返回结果为False。

    # 进程池:同上
    from concurrent.futures import ProcessPoolExecutor
    import urllib.request
    URLS = ['http://www.163.com', 'https://www.baidu.com/', 'https://github.com/']
    def load_url(url):
        with urllib.request.urlopen(url, timeout=60) as conn:
            print('%r page is %d bytes' % (url, len(conn.read())))
    
    executor = ProcessPoolExecutor(max_workers=3)
    if __name__ == '__main__': # 要加main
    
        for url in URLS:
            future = executor.submit(load_url,url)
            print(future.done())
        print('主线程')
    
    #运行结果:
    False  # 子进程只完成创建,并没有执行完成
    False 
    False
    主线程 # 子进程创建完成就会向下执行主线程,并不会等待子进程执行完毕
    'http://www.163.com' page is 662049 bytes
    'https://www.baidu.com/' page is 227 bytes
    'https://github.com/' page is 54629 bytes

    2.使用map来操作线程池/进程池:

      除了submit,Exectuor还为我们提供了map方法,和内建的map用法类似:

    from concurrent.futures import ThreadPoolExecutor
    import urllib.request
    URLS = ['http://www.163.com', 'https://www.baidu.com/', 'https://github.com/']
    def load_url(url):
        with urllib.request.urlopen(url, timeout=60) as conn:
            print('%r page is %d bytes' % (url, len(conn.read())))
    
    executor = ThreadPoolExecutor(max_workers=3)
    
    executor.map(load_url,URLS)
    
    print('主线程')
    
    # 运行结果:
    主线程
    'http://www.163.com' page is 662047 bytes
    'https://www.baidu.com/' page is 227 bytes
    'https://github.com/' page is 54629 bytes

      从运行结果可以看出,map是按照URLS列表元素的顺序返回的,并且写出的代码更加简洁直观,我们可以根据具体的需求任选一种。

    3.wait:

      wait方法接会返回一个tuple(元组),tuple中包含两个set(集合),一个是completed(已完成的)另外一个是uncompleted(未完成的)。使用wait方法的一个优势就是获得更大的自由度,它接收三个参数FIRST_COMPLETED, FIRST_EXCEPTIONALL_COMPLETE,默认设置为ALL_COMPLETED。

      如果采用默认的ALL_COMPLETED,程序会阻塞直到线程池里面的所有任务都完成,再执行主线程:

    from concurrent.futures import ThreadPoolExecutor,wait,as_completed
    import urllib.request
    URLS = ['http://www.163.com', 'https://www.baidu.com/', 'https://github.com/']
    def load_url(url):
        with urllib.request.urlopen(url, timeout=60) as conn:
            print('%r page is %d bytes' % (url, len(conn.read())))
    
    executor = ThreadPoolExecutor(max_workers=3)
    
    f_list = []
    for url in URLS:
        future = executor.submit(load_url,url)
        f_list.append(future)
    print(wait(f_list))
    
    print('主线程')
    
    # 运行结果:
    'http://www.163.com' page is 662047 bytes
    'https://www.baidu.com/' page is 227 bytes
    'https://github.com/' page is 54629 bytes
    DoneAndNotDoneFutures(done={<Future at 0x2d0f898 state=finished returned NoneType>, <Future at 0x2bd0630 state=finished returned NoneType>, <Future at 0x2d27470 state=finished returned NoneType>}, not_done=set())
    主线程

      如果采用FIRST_COMPLETED参数,程序并不会等到线程池里面所有的任务都完成。

    from concurrent.futures import ThreadPoolExecutor,wait,as_completed
    import urllib.request
    URLS = ['http://www.163.com', 'https://www.baidu.com/', 'https://github.com/']
    def load_url(url):
        with urllib.request.urlopen(url, timeout=60) as conn:
            print('%r page is %d bytes' % (url, len(conn.read())))
    
    executor = ThreadPoolExecutor(max_workers=3)
    
    f_list = []
    for url in URLS:
        future = executor.submit(load_url,url)
        f_list.append(future)
    print(wait(f_list,return_when='FIRST_COMPLETED'))
    
    print('主线程')
    
    # 运行结果:
    'http://www.163.com' page is 662047 bytes
    DoneAndNotDoneFutures(done={<Future at 0x2bd15c0 state=finished returned NoneType>}, not_done={<Future at 0x2d0d828 state=running>, <Future at 0x2d27358 state=running>})
    主线程
    'https://www.baidu.com/' page is 227 bytes
    'https://github.com/' page is 54629 bytes

     应用线程池:

    from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
    import requests
    import time,os
    def get_page(url):
        print('<%s> is getting [%s]'%(os.getpid(),url))
        response = requests.get(url)
        if response.status_code==200:  #200代表状态:下载成功了
            return {'url':url,'text':response.text}
    def parse_page(res):
        res = res.result()
        print('<%s> is getting [%s]'%(os.getpid(),res['url']))
        with open('db.txt','a') as f:
            parse_res = 'url:%s size:%s
    '%(res['url'],len(res['text']))
            f.write(parse_res)
    if __name__ == '__main__':
        # p = ThreadPoolExecutor()
        p = ProcessPoolExecutor()
        l = [
            'http://www.baidu.com',
            'http://www.baidu.com',
            'http://www.baidu.com',
            'http://www.baidu.com',
        ]
        for url in l:
            res = p.submit(get_page,url).add_done_callback(parse_page) #这里的回调函数拿到的是一个对象。得
            #  先把返回的res得到一个结果。即在前面加上一个res.result() #谁好了谁去掉回调函数
                                    # 回调函数也是一种编程思想。不仅开线程池用,开线程池也用
        p.shutdown()  #相当于进程池里的close和join
        print('',os.getpid())

      ?写一个小程序对比multiprocessing.pool(ThreadPool)和ProcessPollExecutor(ThreadPoolExecutor)在执行效率上的差距,结合上面提到的Future思考为什么会造成这样的结果?

  • 相关阅读:
    json.net的常用语句JsonConvert.SerializeObject(对象)
    struts2国际化
    多浏览器兼容性问题及解决方案之Javascript篇
    对XMLHttpRequest异步请求的面向对象封装
    java的学习资料
    多浏览器兼容性问题及解决方案之CSS篇
    jQuery库与其他JS库冲突的解决办法
    abstract virtual interface区别
    项目优化经验——垃圾回收导致的性能问题(转)
    C#实现小写金额转大写金额
  • 原文地址:https://www.cnblogs.com/dylan-wu/p/7163823.html
Copyright © 2020-2023  润新知