题目:
A single positive integer i is given. Write a program to find the digit located in the position i in the sequence of number groups S1S2...Sk. Each group Sk consists of a sequence of positive integer numbers ranging from 1 to k, written one after another.
For example, the first 80 digits of the sequence are as follows:
11212312341234512345612345671234567812345678912345678910123456789101112345678910
For example, the first 80 digits of the sequence are as follows:
11212312341234512345612345671234567812345678912345678910123456789101112345678910
Input
The first line of the input file contains a single integer t (1 ≤ t ≤ 10), the number of test cases, followed by one line for each test case. The line for a test case contains the single integer i (1 ≤ i ≤ 2147483647)
Output
There should be one output line per test case containing the digit located in the position i.
Sample Input
2 8 3
Sample Output
2 2
题意分析:
把这些数,根据构造它们的那个数划分成 1; 1,2; 1,2,3;……
然后分析一个数字的位数是怎么确定的,其实,因为数是十进制,可以直接取以10为底的对数+1.
$log_{10}(N)+1$
在写程序的时候,一定要注意N要用double类型。然后我们可以递推求出所有可能的小于MAXN的数,最后一组数就是31268,这个数可以通过写个测试程序测试一下就出来了。
然后就可以确定输入的数字在整个序列中的哪个数字组中,接下来就是确定在这个数字组中的那个数中。
根据序列递增,然后利用求位数的公式,可以直接找到这个数。然后根据N的具体位置,取余取出来即可。
AC代码:
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> using namespace std; typedef long long LL; const LL MAXN = 2147483647; const int Msize = 32000; LL Sum[Msize], a[Msize]; void getS() { Sum[1] = a[1] = 1; int i; for(i = 2; i < Msize; i++) { a[i] = a[i-1] + (int)log10((double)i)+1; Sum[i] = Sum[i-1] + a[i]; } return; } LL Pow(LL a, LL b) { LL ans = 1; while(b) { if(b&1) ans = ans*a; b>>=1; a = a*a; } return ans; } int main() { getS(); LL N; int T; scanf("%d", &T); while(T--) { scanf("%I64d", &N); int i = 1, j, len, pos; while(N > Sum[i]) { i++; } //第N位再i-1所代表的数字区 pos = N - Sum[i-1]; len = 0; for(j = 1; len < pos ; j++) { len += (int)log10(j*1.0) + 1; } //N为在i-1数字区中的第j-1个数中,len为这个数字的最后一位的位置 int ans = (j-1)/Pow(10, len-pos)%10; printf("%d ", ans); } return 0; }