• 线段树(转)


    线段树在一些acm题目中经常见到,这种数据结构主要应用在计算几何和地理信息系统中。下图就为一个线段树:

    (PS:可能你见过线段树的不同表示方式,但是都大同小异,根据自己的需要来建就行。)

    1.线段树基本性质和操作

    线段树是一棵二叉树,记为T(a, b),参数a,b表示区间[a,b],其中b-a称为区间的长度,记为L。

    线段树T(a,b)也可递归定义为:

    若L>1 :  [a, (a+b) div 2]为 T的左儿子;
    
                 [(a+b) div 2,b]为T 的右儿子。 
    
    若L=1 : T为叶子节点。

    线段树中的结点一般采取如下数据结构:

    struct Node
    {
        int   left,right;  //区间左右值
        Node   *leftchild;
        Node   *rightchild;    
    };

    线段树的建立:

    复制代码
    Node   *build(int   l ,  int r ) //建立二叉树
    {
        Node   *root = new Node;
        root->left = l;
        root->right = r;     //设置结点区间
        root->leftchild = NULL;
        root->rightchild = NULL;
    
        if ( l +1< r )
        {
           int  mid = (r+l) >>1;
           root->leftchild = build ( l , mid ) ;
           root->rightchild = build ( mid  , r) ; 
        } 
    
        return    root; 
    }
    复制代码

    线段树中的线段插入和删除

    增加一个cover的域来计算一条线段被覆盖的次数,因此在建立二叉树的时候应顺便把cover置0。

    插入一条线段[c,d]:

    复制代码
    void  Insert(int  c, int d , Node  *root )
    {
           if(c<= root->left&&d>= root->right) 
               root-> cover++;
           else 
           {
               if(c < (root->left+ root->right)/2 ) Insert (c,d, root->leftchild  );
               if(d > (root->left+ root->right)/2 ) Insert (c,d, root->rightchild  );
           }
    } 
    复制代码

    删除一条线段[c,d]:

    复制代码
    void  Delete (int c , int  d , Node  *root )
    {
           if(c<= root->left&&d>= root->right) 
               root-> cover= root-> cover-1;
           else 
           {
              if(c < (root->left+ root->right)/2 ) Delete ( c,d, root->leftchild  );
              if(d > (root->left+ root->right)/2 ) Delete ( c,d, root->rightchild );
           }
    } 
    复制代码

    2.线段树的运用

    线段树的每个节点上往往都增加了一些其他的域。在这些域中保存了某种动态维护的信息,视不同情况而定。这些域使得线段树具有极大的灵活性,可以适应不同的需求。

    例一:

    桌子上零散地放着若干个盒子,桌子的后方是一堵墙。如图所示。现在从桌子的前方射来一束平行光, 把盒子的影子投射到了墙上。问影子的总宽度是多少?

    这道题目是一个经典的模型。在这里,我们略去某些处理的步骤,直接分析重点问题,可以把题目抽象地描述如下:x轴上有若干条线段,求线段覆盖的总长度,即S1+S2的长度。

    2.1最直接的做法:

    设线段坐标范围为[min,max]。使用一个下标范围为[min,max-1]的一维数组,其中数组的第i个元素表示[i,i+1]的区间。数组元素初始化全部为0。对于每一条区间为[a,b]的线段,将[a,b]内所有对应的数组元素均设为1。最后统计数组中1的个数即可。

    初始     0   0  0  0  0
    [1,2]   1   0  0  0  0
    [3,5]   1   0  1  1  0
    [4,6]   1   0  1  1  1
    [5,6]   1   0  1  1  1

    其缺点是时间复杂度决定于下标范围的平方,当下标范围很大时([0,10000]),此方法效率太低。

    2.2离散化的做法:

    基本思想:先把所有端点坐标从小到大排序,将坐标值与其序号一一对应。这样便可以将原先的坐标值转化为序号后,对其应用前一种算法,再将最后结果转化回来得解。该方法对于线段数相对较少的情况有效。

    示例:

    [10000,22000]   [30300,55000]   [44000,60000]   [55000,60000]

    排序得10000,22000,30300,44000,55000,60000

    对应得1, 2, 3, 4, 5, 6

    然后是 [1,2]     [3,5]    [4,6]    [5,6]

    初始     0   0  0  0  0
    [1,2]   1   0  0  0  0
    [3,5]   1   0  1  1  0
    [4,6]   1   0  1  1  1
    [5,6]   1   0  1  1  1

    10000,22000,30300,44000,55000,60000

    1,       2,        3,       4,       5,       6

    (22000-10000)+(60000-30300)=41700

    此方法的时间复杂度决定于线段数的平方,对于线段数较多的情况此方法效率太低。

    2.3使用线段树的做法:

    给线段树每个节点增加一个域cover。cover=1表示该结点所对应的区间被完全覆盖,cover=0表示该结点所对应的区间未被完全覆盖。

    如下图的线段树,添加线段[1,2][3,5][4,6]

    插入算法:

    复制代码
    void   Insert(Node  *root , int  a , int  b)
    {
        int m;
        if( root ->cover == 0) 
        { 
            
            m = (root->left+ root->right)/2 ;
            if (a == root->left && b == root->right) 
                root ->cover =1;
            else if (b <= m)  Insert(root->leftchild , a, b);
            else if (a >= m)  Insert(root->rightchild , a, b);
            else 
            {    
                    Insert(root->leftchild ,a, m);
                    Insert(root->rightchild , m, b);
            }
        }
    }
    复制代码

    统计算法:

    复制代码
    int  Count(Node *root)
    {
        int  m,n;
        if (root->cover == 1)
                return   (root-> right - root-> left);
        else if (root-> right - root-> left== 1 )return 0;
        m= Count(root->leftchild);
         n= Count(root->rightchild);
        return m+n;
    }
    复制代码
  • 相关阅读:
    初识python
    如何通过发新浪微博关闭电脑
    如何给word 文章的每段段尾添加 脚注
    三种可视化格式模型:普通文档流、相对定位与绝对定位、浮动
    Python基础知识:函数
    比较两个数的大小,自定义比较两个整数的大小的方法
    编程输出九九乘法表
    [2012-06-21]结合find的awk
    [2012-05-31]awk去重复项
    [2012-05-31]awk记录分割符RS
  • 原文地址:https://www.cnblogs.com/dxd-success/p/4704034.html
Copyright © 2020-2023  润新知