• CodeForces 935E Fafa and Ancient Mathematics (树形DP)


    题意:给定一个表达式,然后让你添加 n 个加号,m 个减号,使得表达式的值最大。

    析:首先先要建立一个表达式树,这个应该很好建立,就不说了,dp[u][i][0] 表示 u 这个部分表达式,添加 i 个符号,使值最大,dp[u][i][1] 表示 u 个部分表达式,添加 i 个符号,使用值最小,这里添加的符号可能是加号,也可以是减号,就是最小的那个,因为题目说了min(n, m) <= 100,一开始我没看到,就 WA8 了。然后在状转移的时候,分成两类,一类是添加的是加号,那么 dp[u][i][0] = max{dp[lson][j][0] + dp[rson][i-j][0], dp[lson][j][0] - dp[rson][i-j-1][1] },同理可以得到添加减号的时候。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define be begin()
    #define ed end()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define lowbit(x) -x&x
    //#define all 1,n,1
    #define FOR(i,n,x)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.in", "r", stdin)
    #define freopenw freopen("out.out", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e4 + 20;
    const int maxm = 1e6 + 10;
    const LL mod = 1000000000000000LL;
    const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
    const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    inline int readInt(){ int x;  scanf("%d", &x);  return x; }
    
    
    int ch[maxn][2];
    int num[maxn];
    string s;
    int rt, x;
    
    
    void dfs(int l, int r, int &rt){
      if(l == r){
        rt = l;
        ms(ch[rt], -1);
        return ;
      }
      int det = 0;
      for(int i = l; i <= r; ++i)
        if(s[i] == '(')  ++det;
        else if(s[i] == ')')  --det;
        else if(s[i] == '?' && det == 1){
          rt = i;
          dfs(l+1, i-1, ch[i][0]);
          dfs(i+1, r-1, ch[i][1]);
          num[rt] = num[ch[i][0]] + num[ch[i][1]] + 1;
          return ;
        }
    }
    
    int dp[maxn][105][2];
    
    void dfs(int u){
      if(ch[u][0] == -1){
        dp[u][0][0] = dp[u][0][1] = s[u] - '0';
        return ;
      }
      int tt = min(num[u], x);
      int ls = ch[u][0], rs = ch[u][1];
      int t = min(tt, num[ls]);
      dfs(ls);  dfs(rs);
      for(int i = 0; i <= tt; ++i){
        int &mmax = dp[u][i][0];  mmax = -INF;
        int &mmin = dp[u][i][1];  mmin = INF;
        for(int j = 0; j <= t; ++j){
          if(i - j > 0 && i - j - 1 <= min(x, num[rs]))  mmax = max(mmax, dp[ls][j][0] + (n <= m ? dp[rs][i-j-1][0] : -dp[rs][i-j-1][1]));
          if(i - j >= 0 && i - j <= min(num[rs], x))  mmax = max(mmax, dp[ls][j][0] - (n <= m ? dp[rs][i-j][1] : -dp[rs][i-j][0]));
    
          if(i - j > 0 && i - j - 1 <= min(x, num[rs]))  mmin = min(mmin, dp[ls][j][1] + (n <= m ? dp[rs][i-j-1][1] : -dp[rs][i-j-1][0]));
          if(i - j >= 0 && i - j <= min(num[rs], x))  mmin = min(mmin, dp[ls][j][1] - (n <= m ? dp[rs][i-j][0] : -dp[rs][i-j][1]));
        }
      }
    }
    
    int main(){
      cin >> s;
      cin >> n >> m;
      x = min(m, n);
      dfs(0, s.sz-1, rt);
      dfs(rt);
      cout << dp[rt][x][0] << endl;
      return 0;
    }
    

      

  • 相关阅读:
    浓缩版java8新特性
    restful的认识和用法
    常用业务返回对象类ResponseJson
    微信小程序使用websocket通讯的demo,含前后端代码,亲测可用
    完整且易读的最新版小程序登录态和检验注册过没的app.js写法
    完整且易读的微信小程序的注册页面(包含倒计时验证码、获取用户信息)
    BCD工具类(8421)
    IDEA下使用protobuf2(java)
    chrome 调试技巧
    encodeURI和encodeURIComponent的区别?
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/9078281.html
Copyright © 2020-2023  润新知