题意:给定一个 n,求一个最大正整数 N 使得 N 的所有正因数和等于 n。
析:对于任何数一个 n,它的所有正因子都是大于等于本身的,因为 n 本身就是自己的正因数,这样的就可以直接暴力了,答案肯定是在 1 ~ n 范围内。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define be begin() #define ed end() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define aLL 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-6; const int maxn = 1000 + 20; const int maxm = 76543; const int mod = 1e9 + 9; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } inline int readInt(){ int x; scanf("%d", &x); return x; } int ans[maxn]; int main(){ ms(ans, -1); for(int i = 1; i <= 1000; ++i){ int t = sqrt(i + 1.); int sum = 0; for(int j = 1; j < t; ++j) if(i % j == 0) sum += j + i / j; if(i % t == 0){ sum += t; if(t != i / t) sum += i / t; } if(sum < maxn) ans[sum] = i; } int kase = 0; while(scanf("%d", &n) == 1 && n) printf("Case %d: %d ", ++kase, ans[n]); return 0; }