• UVa 1426 Discrete Square Roots (扩展欧几里德)


    题意:给定 x,n,r,满足 r2 ≡ x mod(n) ,求在 0 ~ n 内满足 rr2 ≡ x mod(n) 的所有的 rr。

    析:很明显直接是肯定不行了,复杂度太高了。

     r2 ≡ x mod(n)  (1)

    rr2 ≡ x mod(n)  (2)
    用 (2)- (1)得到

    rr2 - r2 ≡ 0 mod (n)

    (rr + r)*(rr - r) ≡ 0 mod (n),

    可以得到

    (rr + r)*(rr - r) = k * n。

    假设  n = a * b,

    那么 可以知道 (rr + r) % a == 0 && (rr - r) % b == 0 || (rr + r) % b == 0 && (rr - r) % a == 0,

    也就是 

    rr + r = k1 * a  (3)

    rr - r = k2 * b   (4)

    (3)-(4)得

    k1 * a + k2 * b = 2 * r,

    这是一个方程,r 是已知的,然后 a 和 b,可以通过枚举 n 的因子得到,这样就可以解这方程,解出 k1 代入(3),就能得到  rr。

    就解决了这个问题,还有这个可能会产生重复的解,所以可以用 set 。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define be begin()
    #define ed end()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define lowbit(x) -x&x
    //#define aLL 1,n,1
    #define FOR(i,n,x)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.in", "r", stdin)
    #define freopenw freopen("out.out", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-6;
    const int maxn = 300 + 20;
    const int maxm = 76543;
    const int mod = 1e9 + 9;
    const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
    const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    inline int readInt(){ int x;  scanf("%d", &x);  return x; }
    
    void exgcd(int a, int b, LL &d, LL &x, LL &y){
      if(!b){ d = a;  x = 1; y = 0; }
      else{ exgcd(b, a%b, d, y, x); y -= (a/b) * x; }
    }
    
    
    int main(){
      int x, r, kase = 0;
      while(scanf("%d %d %d", &x, &n, &r) == 3 && x + n + r){
        vector<P> fact;
        int t = sqrt(n + 1.);
        for(int i = 1; i <= t; ++i)  if(n % i == 0)  fact.pb(P(i, n/i)), fact.pb(P(n/i, i));
        set<int> sets;
        sets.insert(r);
        LL k1, k2, d;
        for(int i = 0; i < fact.sz; ++i){
          int a = fact[i].fi;
          int b = fact[i].se;
          exgcd(a, b, d, k1, k2);
          if(2 * r % d)  continue;
          int bb = abs(b / d);
          LL K1 = k1 * 2LL * r / d;
          k1 = (K1 % bb + bb) % bb;
          k2 = k1;
          while(1){
            LL rr = k1 * a - r;
            if(rr >= 0){
              if(rr >= n)  break;
              sets.insert(rr);
            }
            k1 += bb;
          }
          while(1){
            LL rr = k2 * a - r;
            if(rr <= n){
              if(rr < 0)  break;
              sets.insert(rr);
            }
            k2 -= bb;
          }
        }
        printf("Case %d:", ++kase);
        for(auto &it: sets)  printf(" %d", it);
        printf("
    ");
      }
      return 0;
    }
    

      

  • 相关阅读:
    Swift2.0 中的String(二):基本操作
    Swift2.0 中的String(一):常用属性
    在Swift中的ASCII到字符转换的问题
    iOS NSData
    UVALive
    Flipping Game(枚举)
    POJ 1182 :食物链(并查集)
    Java数据结构系列之——栈(2):栈的链式存储结构及其操作
    testing and SQA_动态白盒測试
    POJ 2392 Space Elevator
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/8927778.html
Copyright © 2020-2023  润新知