• UVaLive 3487 Duopoly (最小割)


    题意:有两个公司A和B在申请一些资源,现在给出两个公司所申请的内容,内容包括价钱和申请的资源 ,现在你做为官方,你只能拒绝一个申请或者接受一个申请,同一个资源不能两个公司都拥有,且申请的资源不能只给部分,问:作为官方,你能得到的最大利益是多少

    析:就是一个最小割,因为AB两个公司,资源不能共用,只能给一个,也就是官方要舍弃一些利益让他们不共用资源,要这个舍弃的最小。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define all 1,n,1
    #define FOR(i,x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-3;
    const int maxn = 6000 + 10;
    const int maxm = 3e5 + 10;
    const int mod = 1000000007;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, -1, 0, 1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    struct Edge{
      int from, to, cap, flow;
    };
    
    struct Dinic{
      int n, m, s, t;
      vector<Edge> edges;
      vector<int> G[maxn];
      int d[maxn];
      bool vis[maxn];
      int cur[maxn];
    
      void init(int n){
        this-> n = n;
        FOR(i, 0, n)  G[i].cl;
        edges.cl;
      }
    
      void addEdge(int from, int to, int cap){
        edges.pb((Edge){from, to, cap, 0});
        edges.pb((Edge){to, from, 0, 0});
        m = edges.sz;
        G[from].pb(m - 2);
        G[to].pb(m - 1);
      }
    
      bool bfs(){
        ms(vis, 0);  vis[s] = 1;
        d[s] = 0;
        queue<int> q;  q.push(s);
    
        while(!q.empty()){
          int u = q.front();  q.pop();
          for(int i = 0; i < G[u].sz; ++i){
            Edge &e = edges[G[u][i]];
            if(!vis[e.to] && e.cap > e.flow){
              d[e.to] = d[u] + 1;
              vis[e.to] = 1;
              q.push(e.to);
            }
          }
        }
        return vis[t];
      }
    
      int dfs(int u, int a){
        if(u == t || a == 0)  return a;
        int flow = 0, f;
        for(int &i = cur[u]; i < G[u].sz; ++i){
          Edge &e = edges[G[u][i]];
          if(d[e.to] == d[u] + 1 && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0){
            e.flow += f;
            edges[G[u][i]^1].flow -= f;
            flow += f;
            a -= f;
            if(a == 0)  break;
          }
        }
        return flow;
      }
    
      int maxflow(int s, int t){
        this-> s = s;
        this-> t = t;
        int flow = 0;
        while(bfs()){ ms(cur, 0);   flow += dfs(s, INF); }
        return flow;
      }
    };
    
    Dinic dinic;
    
    bool vis[maxn>>1][maxn>>1];
    int a[maxm], b[maxm];
    
    int main(){
      ios::sync_with_stdio(false);
      int T;  cin >> T;
      for(int kase = 1; kase <= T; ++kase){
        cin >> n;  cin.get();
        int s = 0, t = n + 3000 + 1;
        int mmax = -INF, ans = 0;
        dinic.init(t + 2);
        string line;
        ms(vis, 0);  ms(a, 0);  ms(b, 0);
        for(int i = 1; i <= n; ++i){
          getline(cin, line);
          stringstream ss(line);
          int x;  ss >> x;
          dinic.addEdge(s, i, x);
          ans += x;
          while(ss >> x){
            mmax = max(mmax, x);
            a[x] = i;
          }
        }
        cin >> m;  cin.get();
        for(int i = 1; i <= m; ++i){
          getline(cin, line);
          stringstream ss(line);
          int x;  ss >> x;
          dinic.addEdge(i + n, t, x);
          ans += x;
          while(ss >> x){
            mmax = max(mmax, x);
            b[x] = i;
          }
        }
        for(int i = 1; i <= mmax; ++i){
          if(!a[i] || !b[i] || vis[a[i]][b[i]])  continue;
          vis[a[i]][b[i]] = 1;
          dinic.addEdge(a[i], b[i] + n, INF);
        }
        if(kase > 1)  cout << endl;
        cout << "Case " << kase << ":
    ";
        cout << ans - dinic.maxflow(s, t) << endl;
      }
      return 0;
    }
    

      

  • 相关阅读:
    Java ClassLoader
    Java Hashcode
    Java 装箱 拆箱
    Java 深拷贝,浅拷贝
    Java IO流
    JVM内存模型
    C语言中的__FILE__、__LINE__和#line
    OpenMP和MPI的区别
    visual studio代码备份精减
    MVVM设计模式在WPF中的应用
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7781050.html
Copyright © 2020-2023  润新知