题意:给定一个字符串,问你它有多少个子串恰好出现 k 次。
析:后缀数组,先把height 数组处理出来,然后每次取 k 个进行分析,假设取的是 i ~ i+k-1,那么就有重复的,一个是 i-1 ~ i+k-1,另一个是 i ~ i+k,但是这样就删多了,再加上 i - 1 ~ i+k,这样就OK了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 50; const int mod = 1000; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r > 0 && r <= n && c > 0 && c <= m; } struct Array{ int s[maxn], sa[maxn], t[maxn], t2[maxn]; int h[maxn], r[maxn], c[maxn]; int n; int dp[maxn][20]; void init(){ n = 0; memset(sa, 0, sizeof sa); } void build_sa(int m){ int *x = t, *y = t2; for(int i = 0; i < m; ++i) c[i] = 0; for(int i = 0; i < n; ++i) ++c[x[i] = s[i]]; for(int i = 1; i < m; ++i) c[i] += c[i-1]; for(int i = n-1; i >= 0; --i) sa[--c[x[i]]] = i; for(int k = 1; k <= n; k <<= 1){ int p = 0; for(int i = n-k; i < n; ++i) y[p++] = i; for(int i = 0; i < n; ++i) if(sa[i] >= k) y[p++] = sa[i] - k; for(int i = 0; i < m; ++i) c[i] = 0; for(int i = 0; i < n; ++i) ++c[x[y[i]]]; for(int i = 1; i < m; ++i) c[i] += c[i-1]; for(int i = n-1; i >= 0; --i) sa[--c[x[y[i]]]] = y[i]; swap(x, y); p = 1; x[sa[0]] = 0; for(int i = 1; i < n; ++i) x[sa[i]] = y[sa[i-1]] == y[sa[i]] && y[sa[i-1]+k] == y[sa[i]+k] ? p-1 : p++; if(p >= n) break; m = p; } } void getHight(){ int k = 0; for(int i = 0; i < n; ++i) r[sa[i]] = i; for(int i = 0; i < n; ++i){ if(k) --k; int j = sa[r[i]-1]; while(s[i+k] == s[j+k]) ++k; h[r[i]] = k; } } void rmq_init(){ for(int i = 1; i <= n; ++i) dp[i][0] = h[i]; for(int j = 1; (1<<j) <= n; ++j) for(int i = 1; i + (1<<j) <= n; ++i) dp[i][j] = min(dp[i][j-1], dp[i+(1<<j-1)][j-1]); } int query(int L, int R){ if(L == R) return L; ++L; int k = int(log(R-L+1) / log(2.0)); return min(dp[L][k], dp[R-(1<<k)+1][k]); } }; char s[maxn]; Array arr; int main(){ int T; cin >> T; while(T--){ int k; arr.init(); scanf("%d", &k); scanf("%s", s); for(int i = 0; s[i]; ++i) arr.s[arr.n++] = s[i] - 'a' + 1; arr.s[arr.n++] = 0; arr.build_sa(28); arr.getHight(); arr.rmq_init(); int ans = 0; for(int i = 1; i < arr.n; ++i){ int l = i+k-1 < arr.n ? arr.query(i, i+k-1) : 0; int x = i-1 > 0 && i+k-1 < arr.n ? arr.query(i-1, i+k-1) :0; int y = i+k < arr.n ? arr.query(i, i+k) : 0; int z = i-1 > 0 && i+k < arr.n ? arr.query(i-1, i+k) : 0; ans += l - x - y + z; } printf("%d ", ans); } return 0; }