题意:你有一些钱数量在 0 ~ n 之间,然后你要取钱,但是如果取的钱数超过你的钱数,会被警告,问警告不超过m次,把钱取走的期望是多少。
析:dp[i][j] 表示钱在 0 ~ i,然后最多 j 次警告,根据二分的思想,j 最大是11,然后每次取 k 元,分为两种情况,一种是钱数不小于k,那么就会被警告,就会转移到 dp[k-1][j-1],如果线数不小于k,那么转移到 dp[i-k][j]。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 2000 + 10; const LL mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r > 0 && r <= n && c > 0 && c <= m; } int dp[maxn][15]; void init(){ ms(dp, INF); ms(dp[0], 0); for(int i = 1; i < maxn; ++i) for(int j = 1; j < 12; ++j) for(int k = 1; k <= i; ++k) dp[i][j]= min(dp[i][j], dp[i-k][j] + dp[k-1][j-1] + 1 + i); } int main(){ init(); while(scanf("%d %d", &n, &m) == 2) printf("%.6f ", dp[n][min(11, m)] / (n + 1.0)); return 0; }