• HDU 6162 Ch’s gift (线段树+树链剖分)


    题意:给定上一棵树,每个树的结点有一个权值,有 m 个询问,每次询问 s, t ,  a, b,问你从 s 到 t 这条路上,权值在 a 和 b 之间的和。(闭区间)。

    析:很明显的树链剖分,但是要用线段树来维护,首先先离线,然后按询问的 a 排序,每次把小于 a 的权值先更新上,然后再查询,这样就是区间求和了,算完小于a的,再算b的,最答案相减就好了。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define all 1,n,1
    #define FOR(x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e5 + 10;
    const LL mod = 1e9 + 7;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
        return r > 0 && r <= n && c > 0 && c <= m;
    }
    
    
    struct Val{
      int x, id;
    };
    Val a[maxn];
    
    struct Edge{
      int to, next;
    };
    Edge edge[maxn<<1];
    int head[maxn<<1], cnt;
    
    void add(int u, int v){
      edge[cnt].to = v;
      edge[cnt].next = head[u];
      head[u] = cnt++;
    }
    
    struct Query{
      int s, t, a, b;
      int id;
    };
    Query q[maxn];
    
    inline bool cmpVal(const Val &lhs, const Val &rhs){
      return lhs.x < rhs.x;
    }
    
    inline bool cmpL(const Query &lhs, const Query &rhs){
      return lhs.a < rhs.a;
    }
    
    inline bool cmpR(const Query &lhs, const Query &rhs){
      return lhs.b < rhs.b;
    }
    
    int fa[maxn], top[maxn], p[maxn];
    int pos, son[maxn], num[maxn], dep[maxn];
    
    void init(){
      cnt = 0;  pos = 0;
      ms(head, -1);
      ms(son, -1);
    }
    
    void dfs1(int u, int f, int d){
      fa[u] = f;   dep[u] = d;
      num[u] = 1;
      for(int i = head[u]; ~i; i = edge[i].next){
        int v = edge[i].to;
        if(v == f)  continue;
        dfs1(v, u, d+1);
        num[u] += num[v];
        if(son[u] == -1 || num[son[u]] < num[v])  son[u] = v;
      }
    }
    
    void dfs2(int u, int sp){
      top[u] = sp;
      p[u] = ++pos;
      if(son[u] == -1)  return ;
      dfs2(son[u], sp);
      for(int i = head[u]; ~i; i = edge[i].next){
        int v = edge[i].to;
        if(v == son[u] || v == fa[u])  continue;
        dfs2(v, v);
      }
    }
    
    LL sum[maxn<<2];
    
    void push_up(int rt){
      sum[rt] = sum[rt<<1] + sum[rt<<1|1];
    }
    
    void update(int M, int val, int l, int r, int rt){
      if(l == r){ sum[rt] = val;  return ; }
      int m = l + r >> 1;
      if(M <= m)  update(M, val, lson);
      else update(M, val, rson);
      pu(rt);
    }
    
    LL query(int L, int R, int l, int r, int rt){
      if(L <= l && r <= R)  return sum[rt];
      int m = l + r >> 1;
      LL ans = 0;
      if(L <= m)  ans = query(L, R, lson);
      if(R > m)  ans += query(L, R, rson);
      return ans;
    }
    
    
    LL solve(int u, int v){
      int f1 = top[u], f2 = top[v];
      LL ans = 0;
      while(f1 != f2){
        if(dep[f1] < dep[f2]){
          swap(f1, f2);
          swap(u, v);
        }
        ans += query(p[f1], p[u], all);
        u = fa[f1];
        f1 = top[u];
      }
      if(dep[u] > dep[v])  swap(u, v);
      return ans += query(p[u], p[v], all);
    }
    
    LL ansL[maxn], ansR[maxn];
    
    int main(){
      while(scanf("%d %d", &n, &m) == 2){
        init();
        for(int i = 1; i <= n; ++i){
          scanf("%d", &a[i].x);
          a[i].id = i;
        }
        for(int i = 1; i < n; ++i){
          int u, v;
          scanf("%d %d", &u, &v);
          add(u, v);
          add(v, u);
        }
        dfs1(1, -1, 0);
        dfs2(1, 1);
        for(int i = 0; i < m; ++i){
          scanf("%d %d %d %d", &q[i].s, &q[i].t, &q[i].a, &q[i].b);
          --q[i].a;
          q[i].id = i;
        }
        ms(sum, 0);
        sort(a + 1, a + n + 1, cmpVal);
        sort(q, q + m, cmpL);
        int idx = 1;
        for(int i = 0; i < m; ++i){
          while(idx <= n && a[idx].x <= q[i].a)  update(p[a[idx].id], a[idx].x, all), idx++;
          ansL[q[i].id] = solve(q[i].s, q[i].t);
        }
        ms(sum, 0);
        sort(q, q + m, cmpR);
        idx = 1;
        for(int i = 0; i < m; ++i){
          while(idx <= n && a[idx].x <= q[i].b)  update(p[a[idx].id], a[idx].x, all), idx++;
          ansR[q[i].id] = solve(q[i].s, q[i].t);
        }
        for(int i = 0; i < m; ++i){
          if(i)  putchar(' ');
          printf("%I64d", ansR[i]-ansL[i]);
        }
        printf("
    ");
      }
      return 0;
    }
    

      

  • 相关阅读:
    Hadoop_HDFS文件读写代码流程解析和副本存放机制
    Hadoop_MapReduce流程
    Hadoop_YARN框架
    Spark任务流程笔记
    3D俄罗斯方块设计
    Hadoop_FileInputFormat分片
    二叉查找树的懒惰删除(lazy deletion)
    数组的三种随机排序方法
    SpringBoot @Async 异步处理业务逻辑和发短信逻辑
    json字符串转java对象
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7426596.html
Copyright © 2020-2023  润新知