• LightOJ 1268 Unlucky Strings (KMP+矩阵快速幂)


    题意:给出一个字符集和一个字符串和正整数n,问由给定字符集组成的所有长度为n的串中不以给定字符串为连续子串的有多少个?

    析:n 实在是太大了,如果小的话,就可以用动态规划做了,所以只能用矩阵快速幂来做了,dp[i][j] 表示匹配完 i 到匹配 j 个有多少种方案,利用矩阵的性质,就可以快速求出长度为 n 的个数,对于匹配的转移,正好可以用KMP的失配函数来转移。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e16;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-6;
    const int maxn = 50 + 10;
    const int mod = 1e9 + 7;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r > 0 && r <= n && c > 0 && c <= m;
    }
    
    char s[maxn], t[maxn];
    int f[maxn];
    
    struct Matrix{
      unsigned int a[maxn][maxn];
      int n;
      Matrix(int nn) : n(nn){
        memset(a, 0, sizeof a);
      }
    
      void toOne(){
        for(int i = 0; i < n; ++i)
          a[i][i] = 1;
      }
    
      friend Matrix operator * (const Matrix &lhs, const Matrix &rhs){
        Matrix res(lhs.n);
        for(int i = 0; i < lhs.n; ++i)
          for(int j = 0; j < rhs.n; ++j)
            for(int k = 0; k < lhs.n; ++k)
              res.a[i][j] += lhs.a[i][k] * rhs.a[k][j];
        return res;
      }
    };
    
    Matrix fast_pow(Matrix a, int n){
      Matrix res(a.n);
      res.toOne();
      while(n){
        if(n&1) res = res * a;
        a = a * a;
        n >>= 1;
      }
      return res;
    }
    
    void getFail(char *s, int n){
      f[0] = f[1] = 0;
      for(int i = 1; i < n; ++i){
        int j = f[i];
        while(j && s[j] != s[i])  j = f[j];
        f[i+1] = s[i] == s[j] ? j+1 : 0;
      }
    }
    
    int main(){
      int T;  cin >> T;
      for(int kase = 1; kase <= T; ++kase){
        scanf("%d", &n);
        scanf("%s %s", t, s);
        int lens = strlen(s);
        getFail(s, lens);
        Matrix ans(lens);
        for(int i = 0; i < lens; ++i)
          for(int k = 0; t[k]; ++k){
            int j = i;
            while(j && s[j] != t[k])  j = f[j];
            if(s[j] == t[k])  ++j;
            ++ans.a[i][j];
          }
        ans = fast_pow(ans, n);
        unsigned int res = 0;
        for(int i = 0; i < lens; ++i)  res += ans.a[0][i];
        printf("Case %d: %u
    ", kase, res);
      }
      return 0;
    }
    

      

  • 相关阅读:
    Pimlico:个人信息治理套件
    GChemPaint-绘制化学分子布局
    gLabels:名片方案软件
    设置Tomcat在Linux利用体系中自启动办法
    Linux应用系统下Xmanager器材登录设置
    KGmailNotifier-Gmail 邮件关照轨范
    Xfce 4.4.1 发布
    Mozilla Thunderbird 2.0.0.0 正式版颁布
    Gaim 已更名为 Pidgin
    Wine 0.9.35
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7354861.html
Copyright © 2020-2023  润新知