• HDU 5834 Magic boy Bi Luo with his excited tree (树形DP)


    题意:给定一棵树,每个点有个权值,每条边有权值,每经过边都会消耗相应的权值,但是点的权值只能获得一次,问你从 i 点出发能获得的最大权值是多少。

    析:树形DP,就是太麻烦了,两次dfs,维护一共6个值分别是,从 i 出发的最大值并且返回 i, 从 i 出发的最大值并且不返回,从 i 出发的次大值并且不返回,从 i 出发的最大值的子树结点并且不返回,从 i 向父结点出发的最大值并且不返回,从 i 向父结点出发的最大值并且返回。

    第一次dfs就能求出前四个,第二个dfs维护后面两个。

    答案就是  max(所有子节点返回该节点+ 父亲节点不返回该节点, 有个子节点不返回该节点+从父亲节点返回该节点);

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e16;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e5 + 10;
    const int mod = 1e9 + 7;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    int val[maxn];
    struct Edge{
      int to, next, c;
    };
    Edge edge[maxn<<1];
    int head[maxn], cnt;
    int dp[maxn][4];
    int ans[maxn];
    /*
    dp[i][0] the most val and back
    dp[i][1] the most val and not back
    dp[i][2] the second most val and not back
    dp[i][3] the the son of the dp[i][1]
    */
    
    void add_edge(int u, int v, int val){
      edge[cnt].to = v;
      edge[cnt].c = val;
      edge[cnt].next = head[u];
      head[u] = cnt++;
    }
    
    void dfs1(int u, int fa){
      dp[u][0] = dp[u][1] = val[u];
      dp[u][2] = 0;
      for(int i = head[u]; ~i; i = edge[i].next){
        int v = edge[i].to;
        if(v == fa)  continue;
        dfs1(v, u);
      }
      for(int i = head[u]; ~i; i = edge[i].next){
        int v = edge[i].to;
        if(v == fa)  continue;
        int c = edge[i].c;
        dp[u][0] += max(0, dp[v][0] - 2*c);
      }
      for(int i = head[u]; ~i; i = edge[i].next){
        int v = edge[i].to;
        if(v == fa)  continue;
        int c = edge[i].c;
        int val = dp[u][0] - max(0, dp[v][0] - 2*c) + max(0, dp[v][1] - c);
        if(val > dp[u][1]){
          dp[u][2] = dp[u][1];
          dp[u][1] = val;
          dp[u][3] = v;
        }
        else if(val > dp[u][2])
          dp[u][2] = val;
      }
    }
    
    void dfs2(int u, int fa, int fb, int fnb){
      ans[u] = max(fb+dp[u][1], fnb+dp[u][0]);
      for(int i = head[u]; ~i; i = edge[i].next){
        int v = edge[i].to;
        if(v == fa)  continue;
        int c = edge[i].c;
        int newfb = fb + dp[u][0] - max(0, dp[v][0] - 2*c);
        int newfnb;
        if(v == dp[u][3])
          newfnb = max(fb + dp[u][2] - max(0, dp[v][0]-2*c), fnb + dp[u][0] - max(0, dp[v][0]-2*c));
        else
          newfnb = max(fb + dp[u][1] - max(0, dp[v][0]-2*c), fnb + dp[u][0] - max(0, dp[v][0]-2*c));
        dfs2(v, u, max(0, newfb-2*c), max(0, newfnb-c));
      }
    }
    
    int main(){
      int T;  cin >> T;
      for(int kase = 1; kase <= T; ++kase){
        scanf("%d", &n);
        for(int i = 1; i <= n; ++i)  scanf("%d", val+i);
        memset(head, -1, sizeof head);
        cnt = 0;
        for(int i = 1; i < n; ++i){
          int u, v, c;
          scanf("%d %d %d", &u, &v, &c);
          add_edge(u, v, c);
          add_edge(v, u, c);
        }
        dfs1(1, -1);
        dfs2(1, -1, 0, 0);
        printf("Case #%d:
    ", kase);
        for(int i = 1; i <= n; ++i)
          printf("%d
    ", ans[i]);
      }
      return 0;
    }
    

      

  • 相关阅读:
    [转]linux下的fms2流媒体服务器搭建六部曲之四格式转换篇
    Linux 信号signal处理函数
    FMS在linux下安装时的问题处理
    Linux 下让你的C程序在后台运行
    Linux 信号signal处理机制
    Flash Media Server 2 无限制许可文件
    JavaScript动态控制网页元素事件
    自定义MessageBox的窗口颜色,字体等属性
    [转]linux下的fms2流媒体服务器搭建六部曲之一ffmpeg安装篇
    [转]linux下的fms2流媒体服务器搭建六部曲之三FlashMediaServer安装篇
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7349947.html
Copyright © 2020-2023  润新知