• LightOJ 1284 Lights inside 3D Grid (数学期望)


    题意:在一个三维的空间,每个点都有一盏灯,开始全是关的.现在每次随机选两个点,把两个点之间的全部点,开关都按一遍,问k次过后开着的灯的期望数量;

    析:很容易知道,如果一盏灯被按了奇数次,那么它肯定是开的,否则就是关的,所以我们只要计算每盏灯开着的概率就好了。对于每盏灯,假设开一次的概率是p, 这个很容易求得,那么开一共k次有奇数次开着的和是多少呢?假设Fn表示n次奇数的和,那么Fn = Fn * (1-p) + (1-Fn)*p,然后就好算了。解得Fn = 0.5 - 0.5*(1-2p)^n。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e16;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 100000 + 10;
    const int mod = 1e9 + 7;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    
    double solve(int i, int j){
      return (2.0 * i * (j-i+1.0) - 1.0) / j / j;
    }
    
    int main(){
      int T;  cin >> T;
      for(int kase = 1; kase <= T; ++kase){
        double ans = 0.0;
        int x, y, z;
        scanf("%d %d %d %d", &x, &y, &z, &n);
        for(int i = 1; i <= x; ++i)  for(int j = 1; j <= y; ++j)
          for(int k = 1; k <= z; ++k){
            double p = solve(i, x) * solve(j, y) * solve(k, z);
            ans += 0.5 - 0.5 * pow(1-2*p, n);
          }
        printf("Case %d: %.10f
    ", kase, ans);
      }
      return 0;
    }
    

      

  • 相关阅读:
    rem适配布局---5. 方案1:苏宁首页制作1
    rem适配布局---4. rem适配方案
    rem适配布局---3. less
    rem适配布局---2. 媒体查询
    rem适配布局---1. 基础
    flex布局---9.携程网案例
    java基础---3. 数据类型转换、运算符
    flex布局---8.flex布局原理
    java基础---2. 常量&变量
    工会项目结题,游泳锻炼
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7345602.html
Copyright © 2020-2023  润新知