题意:在一个三维的空间,每个点都有一盏灯,开始全是关的.现在每次随机选两个点,把两个点之间的全部点,开关都按一遍,问k次过后开着的灯的期望数量;
析:很容易知道,如果一盏灯被按了奇数次,那么它肯定是开的,否则就是关的,所以我们只要计算每盏灯开着的概率就好了。对于每盏灯,假设开一次的概率是p, 这个很容易求得,那么开一共k次有奇数次开着的和是多少呢?假设Fn表示n次奇数的和,那么Fn = Fn * (1-p) + (1-Fn)*p,然后就好算了。解得Fn = 0.5 - 0.5*(1-2p)^n。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e16; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 100000 + 10; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } double solve(int i, int j){ return (2.0 * i * (j-i+1.0) - 1.0) / j / j; } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ double ans = 0.0; int x, y, z; scanf("%d %d %d %d", &x, &y, &z, &n); for(int i = 1; i <= x; ++i) for(int j = 1; j <= y; ++j) for(int k = 1; k <= z; ++k){ double p = solve(i, x) * solve(j, y) * solve(k, z); ans += 0.5 - 0.5 * pow(1-2*p, n); } printf("Case %d: %.10f ", kase, ans); } return 0; }