题意:给n个字符串,给m个询问,每个询问给k个条形码。每个条形码由8个小码组成,每个小码有相应的宽度,已知一个条形码的宽度只有2种,宽的表示1,窄的表示0。并且宽的宽度是窄的宽度的2倍。由于扫描的时候有误差,每个小码的宽度为一个浮点型数据,保证每个数据的误差在5%内。所以一个条形码可以对应一个ASCC码,表示一个小写字母。k个条形码表示一个字符串s,每个询问表示给定的m个字符串中以s为前缀的字符串个数。
析:很容易看起来是Tire树, 不知道能不能暴过去,我觉得差不多可以,主要是在处理浮点数上,这个很简单,既然误差这么小,那么我们就可以取最大值和最小值然后除2,小的为0, 大的为1。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 30 * 10000 + 10; const int mod = 10; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r > 0 && r <= n && c > 0 && c <= m; } struct Trie{ int ch[maxn][26]; int val[maxn]; int sz; void init(){ memset(ch[0], 0, sizeof ch[0]); sz = 1; } int idx(char c){ return c - 'a'; } void insert(char *s){ int u = 0; for(int i = 0; s[i]; ++i){ int c = idx(s[i]); if(!ch[u][c]){ memset(ch[sz], 0, sizeof ch[sz]); val[sz] = 0; ch[u][c] = sz++; } u = ch[u][c]; ++val[u]; } } int query(char *s){ int u = 0; for(int i = 0; s[i]; ++i){ int c = idx(s[i]); if(!ch[u][c]) return 0; u = ch[u][c]; } return val[u]; } }; char s[50]; Trie trie; double a[10]; int main(){ while(scanf("%d %d", &n, &m) == 2){ trie.init(); for(int i = 0; i < n; ++i){ scanf("%s", s); trie.insert(s); } LL ans = 0; while(m--){ int k; scanf("%d", &k); for(int i = 0; i < k; ++i){ double mmin = inf, mmax = -1; for(int j = 0; j < 8; ++j){ scanf("%lf", a+j); mmin = min(mmin, a[j]); mmax = max(mmax, a[j]); } double ave = (mmin + mmax) / 2.0; int t = 0; for(int j = 0; j < 8; ++j) if(a[j] < ave) t = t * 2; else t = t * 2 + 1; s[i] = t; } s[k] = 0; ans += trie.query(s); } printf("%I64d ", ans); } return 0; }