• UVaLive 5031 Graph and Queries (Treap)


    题意:初始时给出一个图,每个点有一个权值,三种操作:(1)删除某个边;(2)修改每个点的权值;(3)询问与节点x在一个连通分量中所有点的第K大的权值。

    析:首先是要先离线,然后再倒着做,第一个操作就成了加边操作,很容易实现,第二操作,就是分成两个操作,先把x结点删掉,然后再插入一个新结点,

    最后一个是就是求某个连通分量的第 k 大,直接用treap直接查找就好,注意问是第 k 大,不是第 k 小。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e16;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 5e5 + 10;
    const int mod = 1e9 + 7;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    int w[maxn], a[maxn], b[maxn];
    bool removed[maxn];
    LL cnt, tot;
    
    struct Command{
      char type;
      int x, p;
    };
    Command com[maxn];
    int p[maxn];
    int Find(int x){ return x == p[x] ? x : p[x] = Find(p[x]); }
    
    struct Node{
      Node *ch[2];
      int r, v, s;
      Node(int v) : v(v){ ch[0] = ch[1] = nullptr;  r = rand();  s = 1; }
      bool operator < (const Node &p) const{
        return r < p.r;
      }
      int cmp(int x) const{
        if(x == v)  return -1;
        return x < v ? 0 : 1;
      }
      void maintain(){
        s = 1;
        if(ch[0] != nullptr)  s += ch[0]->s;
        if(ch[1] != nullptr)  s += ch[1]->s;
      }
    };
    
    void Rotate(Node* &o, int d){
      Node *k = o->ch[d^1];  o->ch[d^1] = k->ch[d];  k->ch[d] = o;
      o->maintain();  k->maintain();  o = k;
    }
    
    void Insert(Node* &o, int x){
      if(o == nullptr) o = new Node(x);
      else{
        int d = (x < o->v ? 0 : 1);
        Insert(o->ch[d], x);
        if(o->ch[d]->r > o->r)  Rotate(o, d^1);
      }
      o->maintain();
    }
    
    void Remove(Node* &o, int x){
      int d = o->cmp(x);
      if(d == -1){
        Node* u = o;
        if(o->ch[0] != nullptr && o->ch[1] != nullptr){
          int d2 = (o->ch[0]->r > o->ch[1]->r ? 1 : 0);
          Rotate(o, d2);  Remove(o->ch[d2], x);
        }
        else{
          if(o->ch[0] == nullptr)  o = o->ch[1];
          else  o = o->ch[0];
          delete u;
        }
      }
      else  Remove(o->ch[d], x);
      if(o != nullptr)  o->maintain();
    }
    Node* root[maxn];
    
    void removeTree(Node* &o){
      if(o->ch[0] != nullptr)  removeTree(o->ch[0]);
      if(o->ch[1] != nullptr)  removeTree(o->ch[1]);
      delete o;
      o = nullptr;
    }
    
    void Merge(Node* &src, Node* &des){
      if(src->ch[0] != nullptr)  Merge(src->ch[0], des);
      if(src->ch[1] != nullptr)  Merge(src->ch[1], des);
      Insert(des, src->v);
      delete src;
      src = nullptr;
    }
    
    void add(int i){
      int x = Find(a[i]);
      int y = Find(b[i]);
      if(x != y){
        if(root[x]->s > root[y]->s){ p[y] = x; Merge(root[y], root[x]); }
        else{ p[x] = y;  Merge(root[x], root[y]); }
      }
    }
    
    int kTh(Node* &o, int k){
      if(o == nullptr || k <= 0 || k > o->s)  return 0;
      int s = (o->ch[1] == nullptr ? 0 : o->ch[1]->s);
      if(s + 1 == k)  return o->v;
      if(k <= s)  return kTh(o->ch[1], k);
      return kTh(o->ch[0], k - s - 1);
    }
    
    void change(int i, int v){
      int x = Find(i);
      Remove(root[x], w[i]);
      Insert(root[x], v);
      w[i] = v;
    }
    
    void query(int x, int k){
      ++cnt;  x = Find(x);
      tot += kTh(root[x], k);
    }
    
    int main(){
      srand(233333);
      int kase = 0;
      while(scanf("%d %d", &n, &m) == 2 && m+n){
        for(int i = 1; i <= n; ++i)  scanf("%d", w+i);
        for(int i = 1; i <= m; ++i)  scanf("%d %d", a+i, b+i);
        memset(removed, 0, sizeof removed);
    
        int c = 0;
        while(1){
          int x, p = 0, v = 0;
          char type;
          scanf(" %c", &type);
          if(type == 'E')  break;
          scanf("%d", &x);
          if(type == 'D')  removed[x] = 1;
          else if(type == 'Q')  scanf("%d", &p);
          else {
            scanf("%d", &v);
            p = w[x];  w[x] = v;
          }
          com[c++] = (Command){type, x, p};
        }
        for(int i = 1; i <= n; ++i){
          p[i] = i;
          root[i] = new Node(w[i]);
        }
        for(int i = 1; i <= m; ++i)  if(!removed[i])  add(i);
    
        cnt = tot = 0;
        for(int i = c-1; i >= 0; --i){
          if(com[i].type == 'D')  add(com[i].x);
          else if(com[i].type == 'C')  change(com[i].x, com[i].p);
          else query(com[i].x, com[i].p);
        }
        printf("Case %d: %f
    ", ++kase, cnt == 0 ? 0 : (double)tot / cnt);
        for(int i = 1; i <= n; ++i)  if(root[i] != nullptr)  removeTree(root[i]);
      }
      return 0;
    }
    

      

  • 相关阅读:
    记录一些经常被忽略的结论
    Eclipse 各种问题解决记录
    Feign 动态URL 解决记录
    Nacos 启动失败
    多git账号配置解决方案
    记一次java.lang.StackOverflowError
    StringBuilder 以及 StringBuffer默认大小与扩容
    MySQL索引背后的数据结构及原理
    我没有高并发项目经验,但是面试的时候经常被问到高并发、性能调优方面的问题,有什么办法可以解决吗?
    istio 学习之 手动注入sidecar
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6745242.html
Copyright © 2020-2023  润新知