• UVa 1349 Optimal Bus Route Design (最佳完美匹配)


    题意:给定一个有向图,让你找出若干个图,使得每个点恰好属于一个圈,并且总的权和最小。

    析:每个点都有唯一的一个圈,也就是说每一点都有唯一的后继,那么我们就可以转换成求一个图的最小权的最佳完全匹配,可以用最小费用流来求,

    先把每个结点拆成两个点,假设是x,y,然后建立一个源点,向每个点的x连一条容量为1的边,建立一个汇点,每个点的y向汇点连一条容量为1的边,

    每条边u,v,也连接一条容量为1,费用为权值的边,最小求一个最小费用流即可。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-5;
    const int maxn = 2000 + 10;
    const int mod = 1e6;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    struct Edge{
      int from, to, cap, flow;
      LL cost;
    };
    
    struct MCMF{
      int n, m;
      vector<Edge> edges;
      vector<int> G[maxn];
      int inq[maxn];
      LL d[maxn];
      int p[maxn];
      int a[maxn];
    
      void init(int n){
        this->n = n;
        for(int i = 0; i < n; ++i)  G[i].clear();
        edges.clear();
      }
    
      void addEdge(int from, int to, int cap, LL cost){
        edges.push_back((Edge){from, to, cap, 0, cost});
        edges.push_back((Edge){to, from, 0, 0, -cost});
        m = edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
      }
    
      bool BellmanFord(int s, int t, int &flow, LL &cost){
        for(int i = 0; i < n; ++i)  d[i] = INF;
        memset(inq, 0, sizeof inq);
        d[s] = 0;  inq[s] = 1;  p[s] = 0;   a[s] = INF;
    
        queue<int> q;
        q.push(s);
        while(!q.empty()){
          int u = q.front();  q.pop();
          inq[u] = 0;
          for(int i = 0; i < G[u].size(); ++i){
            Edge &e = edges[G[u][i]];
            if(e.cap > e.flow && d[e.to] > d[u] + e.cost){
              d[e.to] = d[u] + e.cost;
              p[e.to] = G[u][i];
              a[e.to] = min(a[u], e.cap-e.flow);
              if(!inq[e.to])  q.push(e.to),  inq[e.to] = 1;
            }
          }
        }
        if(d[t] == INF)  return false;
        flow += a[t];
        cost += d[t] * a[t];
        int u = t;
        while(u != s){
          edges[p[u]].flow += a[t];
          edges[p[u]^1].flow -= a[t];
          u = edges[p[u]].from;
        }
        return true;
      }
    
      int minCost(int s, int t, LL &cost){
        int flow = 0;  cost = 0;
        while(BellmanFord(s, t, flow, cost));
        return flow;
      }
    };
    MCMF mcmf;
    
    int main(){
      while(scanf("%d", &n) == 1 && n){
        mcmf.init(n+n+2);
        int v;  LL val;
        int s = 0, t = n+n+1;
        for(int i = 1; i <= n; ++i){
         // mcmf.addEdge(i, i+n, 1, 0);
          mcmf.addEdge(s, i, 1, 0);
          mcmf.addEdge(i+n, t, 1, 0);
          while(scanf("%d", &v) == 1 && v){
            scanf("%lld", &val);
            mcmf.addEdge(i, v+n, 1, val);
          }
        }
    
        LL ans;
        if(mcmf.minCost(s, t, ans) == n)  printf("%lld
    ", ans);
        else  printf("N
    ");
      }
      return 0;
    }
    
  • 相关阅读:
    一种字段串的拆分
    获取存储过程返回值的几种方式
    使用表值参数(数据库引擎)
    转 Dynamics CRM Alert and Notification JavaScript Methods
    CRM 2016 自定义对话框
    CRM 2016 子表单中N:1关系 字段要求与新建时的关系
    恢复CRM plugin
    CRM Diagnostics CRM 2016 诊断
    [Windows] Visual Studio 2010 快捷键大全
    [Java] Web开发HTTP状态码整理
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6416068.html
Copyright © 2020-2023  润新知