• UVa 11082 Matrix Decompressing (网络流)


    题意:给定一个矩阵的每行每列的前缀和,矩阵的元素是1-20,求这个矩阵。

    析:一个网络流题,首先先把每个点的数减1,那么元素就成了0-19,这样就是一个普通的网络流了,建立一个源点和汇点,源点向每行连一条边,

    汇点向每列连一条边,每个行向每个列连一条容量为19的边,其他的边都是相应的容量。最后跑一次最大流就行了。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-5;
    const int maxn = 500 + 10;
    const int mod = 1e6;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    struct Edge{
      int from, to, cap, flow;
    };
    
    struct Dinic{
      int n, m, s, t;
      vector<Edge> edges;
      vector<int> G[maxn];
      bool vis[maxn];
      int d[maxn];
      int cur[maxn];
    
      void init(){
        edges.clear();
        for(int i = 0; i < maxn; ++i)  G[i].clear();
      }
    
      bool bfs(){
        memset(vis, 0, sizeof vis);
        queue<int> q;
        q.push(s);
        d[s] = 0;  vis[s] = true;
        while(!q.empty()){
          int x = q.front();  q.pop();
          for(int i = 0; i < G[x].size(); ++i){
            Edge &e = edges[G[x][i]];
            if(!vis[e.to] && e.cap > e.flow){
              vis[e.to] = 1;
              d[e.to] = d[x] + 1;
              q.push(e.to);
            }
          }
        }
        return vis[t];
      }
    
      int dfs(int x, int a){
        if(x == t || a == 0)  return a;
        int flow = 0, f;
        for(int& i = cur[x]; i < G[x].size(); ++i){
          Edge& e = edges[G[x][i]];
          if(d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap-e.flow))) > 0){
            e.flow += f;
            edges[G[x][i]^1].flow -= f;
            flow += f;
            a -= f;
            if(!a)  break;
          }
        }
        return flow;
      }
    
      int maxflow(int s, int t){
        this->s = s;  this->t = t;
        int flow = 0;
        while(bfs()){
          memset(cur, 0, sizeof cur);
          flow += dfs(s, INF);
        }
        return flow;
      }
    
      void addEdge(int from, int to, int cap){
        edges.push_back(Edge{from, to, cap, 0});
        edges.push_back(Edge{to, from, 0, 0});
        m = edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
      }
    };
    int a[maxn], b[maxn];
    Dinic dinic;
    
    void solve(){
      dinic.init();
      int s = 455;
      int t = 456;
      a[0] = b[0] = 0;
      for(int i = 1; i <= n; ++i)  dinic.addEdge(s, i, a[i]-a[i-1]-m);
      for(int i = n+1; i <= m+n; ++i)  dinic.addEdge(i, t, b[i-n]-b[i-1-n]-n);
      for(int i = 1; i <= n; ++i)
        for(int j = n+1; j <= m+n; ++j)
          dinic.addEdge(i, j, 19);
    
      dinic.maxflow(s, t);
      for(int i = 1; i <= n; ++i)
        for(int j = n+1; j <= m+n; ++j){
          for(int k = 0; k < dinic.G[i].size(); ++k){
            Edge&e = dinic.edges[dinic.G[i][k]];
            if(e.to == j){
                printf("%d%c", e.flow+1, j == m+n ? '
    ' : ' ');
                break;
            }
          }
        }
    }
    
    int main(){
      int T;  cin >> T;
      for(int kase = 1; kase <= T; ++kase){
        scanf("%d %d", &n, &m);
        for(int i = 1; i <= n; ++i)  scanf("%d", a+i);
        for(int i = 1; i <= m; ++i)  scanf("%d", b+i);
        printf("Matrix %d
    ", kase);
        solve();
        if(kase < T)  puts("");
      }
      return 0;
    }
    
  • 相关阅读:
    使用C#编写SqlHelper类
    编译器perspective oo 对象模型(1) 之 初窥c++对象模型
    浅谈 编译器 & 自然语言处理
    基于c#的角色扮演游戏设计与实现
    开源的EtherCAT Master简介
    如何在Windows中编译Linux Unix的代码(采用cygwin)?
    sql拼语句例子
    IOC介绍-手写一个简单的IOC
    protocalBuffer_java版详解(转thanks)
    ProtocalBuffer_数据结构(转thanks)
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6415936.html
Copyright © 2020-2023  润新知