题意:给定一个矩阵的每行每列的前缀和,矩阵的元素是1-20,求这个矩阵。
析:一个网络流题,首先先把每个点的数减1,那么元素就成了0-19,这样就是一个普通的网络流了,建立一个源点和汇点,源点向每行连一条边,
汇点向每列连一条边,每个行向每个列连一条容量为19的边,其他的边都是相应的容量。最后跑一次最大流就行了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-5; const int maxn = 500 + 10; const int mod = 1e6; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } struct Edge{ int from, to, cap, flow; }; struct Dinic{ int n, m, s, t; vector<Edge> edges; vector<int> G[maxn]; bool vis[maxn]; int d[maxn]; int cur[maxn]; void init(){ edges.clear(); for(int i = 0; i < maxn; ++i) G[i].clear(); } bool bfs(){ memset(vis, 0, sizeof vis); queue<int> q; q.push(s); d[s] = 0; vis[s] = true; while(!q.empty()){ int x = q.front(); q.pop(); for(int i = 0; i < G[x].size(); ++i){ Edge &e = edges[G[x][i]]; if(!vis[e.to] && e.cap > e.flow){ vis[e.to] = 1; d[e.to] = d[x] + 1; q.push(e.to); } } } return vis[t]; } int dfs(int x, int a){ if(x == t || a == 0) return a; int flow = 0, f; for(int& i = cur[x]; i < G[x].size(); ++i){ Edge& e = edges[G[x][i]]; if(d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap-e.flow))) > 0){ e.flow += f; edges[G[x][i]^1].flow -= f; flow += f; a -= f; if(!a) break; } } return flow; } int maxflow(int s, int t){ this->s = s; this->t = t; int flow = 0; while(bfs()){ memset(cur, 0, sizeof cur); flow += dfs(s, INF); } return flow; } void addEdge(int from, int to, int cap){ edges.push_back(Edge{from, to, cap, 0}); edges.push_back(Edge{to, from, 0, 0}); m = edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } }; int a[maxn], b[maxn]; Dinic dinic; void solve(){ dinic.init(); int s = 455; int t = 456; a[0] = b[0] = 0; for(int i = 1; i <= n; ++i) dinic.addEdge(s, i, a[i]-a[i-1]-m); for(int i = n+1; i <= m+n; ++i) dinic.addEdge(i, t, b[i-n]-b[i-1-n]-n); for(int i = 1; i <= n; ++i) for(int j = n+1; j <= m+n; ++j) dinic.addEdge(i, j, 19); dinic.maxflow(s, t); for(int i = 1; i <= n; ++i) for(int j = n+1; j <= m+n; ++j){ for(int k = 0; k < dinic.G[i].size(); ++k){ Edge&e = dinic.edges[dinic.G[i][k]]; if(e.to == j){ printf("%d%c", e.flow+1, j == m+n ? ' ' : ' '); break; } } } } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d %d", &n, &m); for(int i = 1; i <= n; ++i) scanf("%d", a+i); for(int i = 1; i <= m; ++i) scanf("%d", b+i); printf("Matrix %d ", kase); solve(); if(kase < T) puts(""); } return 0; }