• UVa 11401 Triangle Counting (计数DP)


    题意:给定一个数 n,从1-n这些数中任意挑出3个数,能组成三角形的数目。

    析:dp[i] 表示从1-i 个中任意挑出3个数,能组成三角形的数目。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e6 + 5;
    const int mod = 1e9 + 7;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline int gcd(int a, int b){ return b ? gcd(b, a%b) : a; }
    inline int lcm(int a, int b){ return a * b / gcd(a, b); }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    LL dp[maxn];
    
    int main(){
        dp[3] = 0;
        for(int i = 4; i < maxn; ++i){
            if(i & 1)  dp[i] = dp[i-1] + (LL)(i-1)*((i-4)/2+1)/2;
            else dp[i] = dp[i-1] + (LL)((i-3)/2+1)*(i-2)/2;
        }
        while(cin >> n && n > 2){
            cout << dp[n] << endl;
        }
        return 0;
    }
    
  • 相关阅读:
    O052、Create Volume 操作 (Part III)
    O051、Create Volume 操作 (Part II)
    O050、Create Volume 操作 (Part I)
    O049、准备 LVM Volume Provider
    O048、掌握 cinder-scheduler 调度逻辑
    O047、 Cinder 组件详解
    O046、掌握Cinder 的设计思想
    O045、理解 Cinder 架构
    O044、一张图秒懂 Nova 16种操作
    O043、计算节点宕机了怎么办
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6002267.html
Copyright © 2020-2023  润新知