题意:你用k 个生成树构成一个完全图。
析:n 个点的完全图有n(n-1)/2个边,一个生成树有n-1个边,你有k 个生成树 即边数等于 K(n-1) ,即 n(n-1)/2 == k(n-1) n = 2*k
所以2k 个边足够,你会发现在每个结点只能做一次开头或者结尾。然后找找规律就好。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define print(a) printf("%d ", (a)) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e2 + 5; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } int main(){ while(scanf("%d", &n) == 1){ m = n << 1; printf("%d ", m); for (int i = 1; i <= n; ++i){ for (int j = i+1; j <= i + n; ++j) printf("%d %d ",i, j); for (int j = 1; j <= m-n-1; ++j) printf("%d %d ",i+n, (i+n+j) % m == 0 ? m : (i+n+j)%m); } } return 0; }