链接:https://ac.nowcoder.com/acm/problem/13230
来源:牛客网
题目描述
输入两个字符串A和B,合并成一个串C,属于A和B的字符在C中顺序保持不变。如"abc"和"xyz"可以被组合成"axbycz"或"abxcyz"等。
我们定义字符串的价值为其最长回文子串的长度(回文串表示从正反两边看完全一致的字符串,如"aba"和"xyyx")。
需要求出所有可能的C中价值最大的字符串,输出这个最大价值即可
我们定义字符串的价值为其最长回文子串的长度(回文串表示从正反两边看完全一致的字符串,如"aba"和"xyyx")。
需要求出所有可能的C中价值最大的字符串,输出这个最大价值即可
输入描述:
第一行一个整数T(T ≤ 50)。 接下来2T行,每两行两个字符串分别代表A,B(|A|,|B| ≤ 50),A,B的字符集为全体小写字母。
输出描述:
对于每组数据输出一行一个整数表示价值最大的C的价值。
示例1
输入
2 aa bb a aaaabcaa
输出
4 5
析:这是一个区间DP,这个容易看出来,状态表示为dp[i][j][k][l]表示第一个字符串 i~j 的子串与第二个字符串的 k~j 子串能不能组成回文串,看到这,应该就知道该怎么做了。
假设第一个字符串为s1,第二个字符串为s2,状态转移方程如下:
if s1[i] == s1[j]: dp[i][j][k][l] |= dp[i+1][j-1][k][l]
if s1[i] == s2[l]: dp[i][j][k][l] |= dp[i+1][j][k][l-1]
if s1[j] == s2[k]: dp[i][j][k][l] |= dp[i][j-1][k+1][l]
if s2[k] == s2[l]: dp[i][j][k][l] |= dp[i][j][k+1][l-1]
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define be begin() #define ed end() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x #define all 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 50 + 7; const int maxm = 2000000 + 7; const LL mod = 1e9 + 7; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; int n, m; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } bool dp[maxn][maxn][maxn][maxn]; bool f[maxn][maxn]; bool g[maxn][maxn]; int main(){ int T; cin >> T; while(T--){ ms(dp, 0); ms(f, 0); ms(g, 0); string s1, s2; cin >> s1 >> s2; n = s1.sz, m = s2.sz; int res = 1; for(int i = n; i >= 1; --i) for(int j = i; j <= n; ++j) if(s1[i-1] == s1[j-1]) f[i][j] = f[i+1][j-1] || i+1 >= j-1; for(int i = m; i >= 1; --i) for(int j = i; j <= m; ++j) if(s2[i-1] == s2[j-1]) g[i][j] = g[i+1][j-1] || i+1 >= j-1; for(int i = n; i >= 1; --i) for(int j = i; j <= n; ++j) for(int k = m; k >= 1; --k) for(int l = k; l <= m; ++l){ bool &ans = dp[i][j][k][l]; if(i == j && k == l){ if(s1[i-1] == s2[k-1]) ans = true; } else if(i == j){ if(s1[i-1] == s2[k-1] && g[k+1][l] || s1[i-1] == s2[l-1] && g[k][l-1]) ans = true; if(s2[l-1] == s2[k-1]) ans |= k + 1 == l || dp[i][j][k+1][l-1]; } else if(k == l){ if(s2[k-1] == s1[i-1] && f[i+1][j] || s2[k-1] == s1[j-1] && f[i][j-1]) ans = true; if(s1[i-1] == s1[j-1]) ans |= dp[i+1][j-1][k][l] || i + 1 == j; } if(i == j || k == l){ if(ans) res = max(res, j+l-k-i+2); continue; } if(s1[i-1] == s1[j-1]) ans |= dp[i+1][j-1][k][l] || (i+1 == j && g[k][l]); if(s1[i-1] == s2[l-1]) ans |= dp[i+1][j][k][l-1] || !(i+1 <= j && k <= l-1) || (i+1 > j && g[k][l-1]) || (k > l-1 && f[i+1][j]); if(s2[k-1] == s1[j-1]) ans |= dp[i][j-1][k+1][l] || !(i <= j-1 && k+1 <= l) || (i > j-1 && g[k+1][l]) || (k+1 > l && f[i][j-1]); if(s2[k-1] == s2[l-1]) ans |= dp[i][j][k+1][l-1] || (k+1 == l && f[i][j]); if(ans) res = max(res, j+l-k-i+2); } cout << res << endl; } return 0; }
合并回文子串