• MD5算法


    #include <stdio.h>
    #include <stdint.h>
    #include <string.h>
    #include <assert.h>
    
    //字节序的小头和大头的问题
    #define ZEN_LITTLE_ENDIAN  0x0123
    #define ZEN_BIG_ENDIAN     0x3210
    
    //目前所有的代码都是为了小头党服务的,不知道有生之年这套代码是否还会为大头党服务一次?
    #ifndef ZEN_BYTES_ORDER
    #define ZEN_BYTES_ORDER    ZEN_LITTLE_ENDIAN
    #endif
    
    #ifndef ZEN_SWAP_UINT16
    #define ZEN_SWAP_UINT16(x)  ((((x) & 0xff00) >>  8) | (((x) & 0x00ff) <<  8))
    #endif
    #ifndef ZEN_SWAP_UINT32
    #define ZEN_SWAP_UINT32(x)  ((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >>  8) | 
        (((x) & 0x0000ff00) <<  8) | (((x) & 0x000000ff) << 24))
    #endif
    #ifndef ZEN_SWAP_UINT64
    #define ZEN_SWAP_UINT64(x)  ((((x) & 0xff00000000000000) >> 56) | (((x) & 0x00ff000000000000) >>  40) | 
        (((x) & 0x0000ff0000000000) >> 24) | (((x) & 0x000000ff00000000) >>  8) | 
        (((x) & 0x00000000ff000000) << 8 ) | (((x) & 0x0000000000ff0000) <<  24) | 
        (((x) & 0x000000000000ff00) << 40 ) | (((x) & 0x00000000000000ff) <<  56))
    #endif
    
    //将一个(字符串)数组,拷贝到另外一个uint32_t数组,同时每个uint32_t反字节序
    void *swap_uint32_memcpy(void *to, const void *from, size_t length)
    {
        memcpy(to, from, length);
        size_t remain_len =  (4 - (length & 3)) & 3;
    
        //数据不是4字节的倍数,补充0
        if (remain_len)
        {
            for (size_t i = 0; i < remain_len; ++i)
            {
                *((char *)(to) + length + i) = 0;
            }
            //调整成4的倍数
            length += remain_len;
        }
    
        //所有的数据反转
        for (size_t i = 0; i < length / 4; ++i)
        {
            ((uint32_t *)to)[i] = ZEN_SWAP_UINT32(((uint32_t *)to)[i]);
        }
    
        return to;
    }
    
    ///MD5的结果数据长度
    static const size_t ZEN_MD5_HASH_SIZE   = 16;
    ///SHA1的结果数据长度
    static const size_t ZEN_SHA1_HASH_SIZE  = 20;
    
    
    
    namespace ZEN_LIB
    {
    
    
    /*!
    @brief      求某个内存块的MD5,
    @return     unsigned char* 返回的的结果,
    @param[in]  buf    求MD5的内存BUFFER指针
    @param[in]  size   BUFFER长度
    @param[out] result 结果
    */
    unsigned char *md5(const unsigned char *buf,
                       size_t size,
                       unsigned char result[ZEN_MD5_HASH_SIZE]);
    
    
    /*!
    @brief      求内存块BUFFER的SHA1值
    @return     unsigned char* 返回的的结果
    @param[in]  buf    求SHA1的内存BUFFER指针
    @param[in]  size   BUFFER长度
    @param[out] result 结果
    */
    unsigned char *sha1(const unsigned char *buf,
                        size_t size,
                        unsigned char result[ZEN_SHA1_HASH_SIZE]);
    };
    
    
    //================================================================================================
    //MD5的算法
    
    //每次处理的BLOCK的大小
    static const size_t ZEN_MD5_BLOCK_SIZE = 64;
    
    //md5算法的上下文,保存一些状态,中间数据,结果
    typedef struct md5_ctx
    {
        //处理的数据的长度
        uint64_t length_;
        //还没有处理的数据长度
        uint64_t unprocessed_;
        //取得的HASH结果(中间数据)
        uint32_t  hash_[4];
    } md5_ctx;
    
    
    #define ROTL32(dword, n) ((dword) << (n) ^ ((dword) >> (32 - (n))))
    #define ROTR32(dword, n) ((dword) >> (n) ^ ((dword) << (32 - (n))))
    #define ROTL64(qword, n) ((qword) << (n) ^ ((qword) >> (64 - (n))))
    #define ROTR64(qword, n) ((qword) >> (n) ^ ((qword) << (64 - (n))))
    
    
    /*!
    @brief      内部函数,初始化MD5的context,内容
    @param      ctx
    */
    static void zen_md5_init(md5_ctx *ctx)
    {
        ctx->length_ = 0;
        ctx->unprocessed_ = 0;
    
        /* initialize state */
        ctx->hash_[0] = 0x67452301;
        ctx->hash_[1] = 0xefcdab89;
        ctx->hash_[2] = 0x98badcfe;
        ctx->hash_[3] = 0x10325476;
    }
    
    /* First, define four auxiliary functions that each take as input
     * three 32-bit words and returns a 32-bit word.*/
    
    /* F(x,y,z) = ((y XOR z) AND x) XOR z - is faster then original version */
    #define MD5_F(x, y, z) ((((y) ^ (z)) & (x)) ^ (z))
    #define MD5_G(x, y, z) (((x) & (z)) | ((y) & (~z)))
    #define MD5_H(x, y, z) ((x) ^ (y) ^ (z))
    #define MD5_I(x, y, z) ((y) ^ ((x) | (~z)))
    
    /* transformations for rounds 1, 2, 3, and 4. */
    #define MD5_ROUND1(a, b, c, d, x, s, ac) { 
            (a) += MD5_F((b), (c), (d)) + (x) + (ac); 
            (a) = ROTL32((a), (s)); 
            (a) += (b); 
        }
    #define MD5_ROUND2(a, b, c, d, x, s, ac) { 
            (a) += MD5_G((b), (c), (d)) + (x) + (ac); 
            (a) = ROTL32((a), (s)); 
            (a) += (b); 
        }
    #define MD5_ROUND3(a, b, c, d, x, s, ac) { 
            (a) += MD5_H((b), (c), (d)) + (x) + (ac); 
            (a) = ROTL32((a), (s)); 
            (a) += (b); 
        }
    #define MD5_ROUND4(a, b, c, d, x, s, ac) { 
            (a) += MD5_I((b), (c), (d)) + (x) + (ac); 
            (a) = ROTL32((a), (s)); 
            (a) += (b); 
        }
    
    
    /*!
    @brief      内部函数,将64个字节,16个uint32_t的数组进行摘要(杂凑)处理,处理的数据自己序是小头数据
    @param      state 存放处理的hash数据结果
    @param      block 要处理的block,64个字节,16个uint32_t的数组
    */
    static void zen_md5_process_block(uint32_t state[4], const uint32_t block[ZEN_MD5_BLOCK_SIZE / 4])
    {
        register unsigned a, b, c, d;
        a = state[0];
        b = state[1];
        c = state[2];
        d = state[3];
    
        const uint32_t *x = NULL;
    
        //MD5里面计算的数据都是小头数据.大头党的数据要处理
    #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
        x = block;
    #else
        uint32_t swap_block[ZEN_MD5_BLOCK_SIZE / 4];
        swap_uint32_memcpy(swap_block, block, 64);
        x = swap_block;
    #endif
    
    
        MD5_ROUND1(a, b, c, d, x[ 0],  7, 0xd76aa478);
        MD5_ROUND1(d, a, b, c, x[ 1], 12, 0xe8c7b756);
        MD5_ROUND1(c, d, a, b, x[ 2], 17, 0x242070db);
        MD5_ROUND1(b, c, d, a, x[ 3], 22, 0xc1bdceee);
        MD5_ROUND1(a, b, c, d, x[ 4],  7, 0xf57c0faf);
        MD5_ROUND1(d, a, b, c, x[ 5], 12, 0x4787c62a);
        MD5_ROUND1(c, d, a, b, x[ 6], 17, 0xa8304613);
        MD5_ROUND1(b, c, d, a, x[ 7], 22, 0xfd469501);
        MD5_ROUND1(a, b, c, d, x[ 8],  7, 0x698098d8);
        MD5_ROUND1(d, a, b, c, x[ 9], 12, 0x8b44f7af);
        MD5_ROUND1(c, d, a, b, x[10], 17, 0xffff5bb1);
        MD5_ROUND1(b, c, d, a, x[11], 22, 0x895cd7be);
        MD5_ROUND1(a, b, c, d, x[12],  7, 0x6b901122);
        MD5_ROUND1(d, a, b, c, x[13], 12, 0xfd987193);
        MD5_ROUND1(c, d, a, b, x[14], 17, 0xa679438e);
        MD5_ROUND1(b, c, d, a, x[15], 22, 0x49b40821);
    
        MD5_ROUND2(a, b, c, d, x[ 1],  5, 0xf61e2562);
        MD5_ROUND2(d, a, b, c, x[ 6],  9, 0xc040b340);
        MD5_ROUND2(c, d, a, b, x[11], 14, 0x265e5a51);
        MD5_ROUND2(b, c, d, a, x[ 0], 20, 0xe9b6c7aa);
        MD5_ROUND2(a, b, c, d, x[ 5],  5, 0xd62f105d);
        MD5_ROUND2(d, a, b, c, x[10],  9,  0x2441453);
        MD5_ROUND2(c, d, a, b, x[15], 14, 0xd8a1e681);
        MD5_ROUND2(b, c, d, a, x[ 4], 20, 0xe7d3fbc8);
        MD5_ROUND2(a, b, c, d, x[ 9],  5, 0x21e1cde6);
        MD5_ROUND2(d, a, b, c, x[14],  9, 0xc33707d6);
        MD5_ROUND2(c, d, a, b, x[ 3], 14, 0xf4d50d87);
        MD5_ROUND2(b, c, d, a, x[ 8], 20, 0x455a14ed);
        MD5_ROUND2(a, b, c, d, x[13],  5, 0xa9e3e905);
        MD5_ROUND2(d, a, b, c, x[ 2],  9, 0xfcefa3f8);
        MD5_ROUND2(c, d, a, b, x[ 7], 14, 0x676f02d9);
        MD5_ROUND2(b, c, d, a, x[12], 20, 0x8d2a4c8a);
    
        MD5_ROUND3(a, b, c, d, x[ 5],  4, 0xfffa3942);
        MD5_ROUND3(d, a, b, c, x[ 8], 11, 0x8771f681);
        MD5_ROUND3(c, d, a, b, x[11], 16, 0x6d9d6122);
        MD5_ROUND3(b, c, d, a, x[14], 23, 0xfde5380c);
        MD5_ROUND3(a, b, c, d, x[ 1],  4, 0xa4beea44);
        MD5_ROUND3(d, a, b, c, x[ 4], 11, 0x4bdecfa9);
        MD5_ROUND3(c, d, a, b, x[ 7], 16, 0xf6bb4b60);
        MD5_ROUND3(b, c, d, a, x[10], 23, 0xbebfbc70);
        MD5_ROUND3(a, b, c, d, x[13],  4, 0x289b7ec6);
        MD5_ROUND3(d, a, b, c, x[ 0], 11, 0xeaa127fa);
        MD5_ROUND3(c, d, a, b, x[ 3], 16, 0xd4ef3085);
        MD5_ROUND3(b, c, d, a, x[ 6], 23,  0x4881d05);
        MD5_ROUND3(a, b, c, d, x[ 9],  4, 0xd9d4d039);
        MD5_ROUND3(d, a, b, c, x[12], 11, 0xe6db99e5);
        MD5_ROUND3(c, d, a, b, x[15], 16, 0x1fa27cf8);
        MD5_ROUND3(b, c, d, a, x[ 2], 23, 0xc4ac5665);
    
        MD5_ROUND4(a, b, c, d, x[ 0],  6, 0xf4292244);
        MD5_ROUND4(d, a, b, c, x[ 7], 10, 0x432aff97);
        MD5_ROUND4(c, d, a, b, x[14], 15, 0xab9423a7);
        MD5_ROUND4(b, c, d, a, x[ 5], 21, 0xfc93a039);
        MD5_ROUND4(a, b, c, d, x[12],  6, 0x655b59c3);
        MD5_ROUND4(d, a, b, c, x[ 3], 10, 0x8f0ccc92);
        MD5_ROUND4(c, d, a, b, x[10], 15, 0xffeff47d);
        MD5_ROUND4(b, c, d, a, x[ 1], 21, 0x85845dd1);
        MD5_ROUND4(a, b, c, d, x[ 8],  6, 0x6fa87e4f);
        MD5_ROUND4(d, a, b, c, x[15], 10, 0xfe2ce6e0);
        MD5_ROUND4(c, d, a, b, x[ 6], 15, 0xa3014314);
        MD5_ROUND4(b, c, d, a, x[13], 21, 0x4e0811a1);
        MD5_ROUND4(a, b, c, d, x[ 4],  6, 0xf7537e82);
        MD5_ROUND4(d, a, b, c, x[11], 10, 0xbd3af235);
        MD5_ROUND4(c, d, a, b, x[ 2], 15, 0x2ad7d2bb);
        MD5_ROUND4(b, c, d, a, x[ 9], 21, 0xeb86d391);
    
        state[0] += a;
        state[1] += b;
        state[2] += c;
        state[3] += d;
    }
    
    
    /*!
    @brief      内部函数,处理数据的前面部分(>64字节的部分),每次组成一个64字节的block就进行杂凑处理
    @param[out] ctx  算法的context,用于记录一些处理的上下文和结果
    @param[in]  buf  处理的数据,
    @param[in]  size 处理的数据长度
    */
    static void zen_md5_update(md5_ctx *ctx, const unsigned char *buf, size_t size)
    {
        //为什么不是=,因为在某些环境下,可以多次调用zen_md5_update,但这种情况,必须保证前面的调用,每次都没有unprocessed_
        ctx->length_ += size;
    
        //每个处理的块都是64字节
        while (size >= ZEN_MD5_BLOCK_SIZE)
        {
            zen_md5_process_block(ctx->hash_, reinterpret_cast<const uint32_t *>(buf));
            buf  += ZEN_MD5_BLOCK_SIZE;
            size -= ZEN_MD5_BLOCK_SIZE;
        }
    
        ctx->unprocessed_ = size;
    }
    
    
    /*!
    @brief      内部函数,处理数据的末尾部分,我们要拼出最后1个(或者两个)要处理的BLOCK,加上0x80,加上长度进行处理
    @param[in]  ctx    算法的context,用于记录一些处理的上下文和结果
    @param[in]  buf    处理的数据
    @param[in]  size   处理buffer的长度
    @param[out] result 返回的结果,
    */
    static void zen_md5_final(md5_ctx *ctx, const unsigned char *buf, size_t size, unsigned char *result)
    {
        uint32_t message[ZEN_MD5_BLOCK_SIZE / 4];
    
        //保存剩余的数据,我们要拼出最后1个(或者两个)要处理的块,前面的算法保证了,最后一个块肯定小于64个字节
        if (ctx->unprocessed_)
        {
            memcpy(message, buf + size - ctx->unprocessed_, static_cast<size_t>( ctx->unprocessed_));
        }
    
        //得到0x80要添加在的位置(在uint32_t 数组中),
        uint32_t index = ((uint32_t)ctx->length_ & 63) >> 2;
        uint32_t shift = ((uint32_t)ctx->length_ & 3) * 8;
    
        //添加0x80进去,并且把余下的空间补充0
        message[index]   &= ~(0xFFFFFFFF << shift);
        message[index++] ^= 0x80 << shift;
    
        //如果这个block还无法处理,其后面的长度无法容纳长度64bit,那么先处理这个block
        if (index > 14)
        {
            while (index < 16)
            {
                message[index++] = 0;
            }
    
            zen_md5_process_block(ctx->hash_, message);
            index = 0;
        }
    
        //补0
        while (index < 14)
        {
            message[index++] = 0;
        }
    
        //保存长度,注意是bit位的长度,这个问题让我看着郁闷了半天,
        uint64_t data_len = (ctx->length_) << 3;
    
        //注意MD5算法要求的64bit的长度是小头LITTLE-ENDIAN编码,注意下面的比较是!=
    #if ZEN_BYTES_ORDER != ZEN_LITTLE_ENDIAN
        data_len = ZEN_SWAP_UINT64(data_len);
    #endif
    
        message[14] = (uint32_t) (data_len & 0x00000000FFFFFFFF);
        message[15] = (uint32_t) ((data_len & 0xFFFFFFFF00000000ULL) >> 32);
    
        zen_md5_process_block(ctx->hash_, message);
    
        //注意结果是小头党的,在大头的世界要进行转换
    #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
        memcpy(result, &ctx->hash_, ZEN_MD5_HASH_SIZE);
    #else
        swap_uint32_memcpy(result, &ctx->hash_, ZEN_MD5_HASH_SIZE);
    #endif
    
    }
    
    
    //计算一个内存数据的MD5值
    unsigned char *ZEN_LIB::md5(const unsigned char *buf,
                                size_t size,
                                unsigned char result[ZEN_MD5_HASH_SIZE])
    {
        assert(result != NULL);
    
        md5_ctx ctx;
        zen_md5_init(&ctx);
        zen_md5_update(&ctx, buf, size);
        zen_md5_final(&ctx, buf, size, result);
        return result;
    }
    
    
    
    
    //================================================================================================
    //SHA1的算法
    
    //每次处理的BLOCK的大小
    static const size_t ZEN_SHA1_BLOCK_SIZE = 64;
    
    //SHA1算法的上下文,保存一些状态,中间数据,结果
    typedef struct sha1_ctx
    {
    
        //处理的数据的长度
        uint64_t length_;
        //还没有处理的数据长度
        uint64_t unprocessed_;
        /* 160-bit algorithm internal hashing state */
        uint32_t hash_[5];
    } sha1_ctx;
    
    //内部函数,SHA1算法的上下文的初始化
    static void zen_sha1_init(sha1_ctx *ctx)
    {
        ctx->length_ = 0;
        ctx->unprocessed_ = 0;
        // 初始化算法的几个常量,魔术数
        ctx->hash_[0] = 0x67452301;
        ctx->hash_[1] = 0xefcdab89;
        ctx->hash_[2] = 0x98badcfe;
        ctx->hash_[3] = 0x10325476;
        ctx->hash_[4] = 0xc3d2e1f0;
    }
    
    
    /*!
    @brief      内部函数,对一个64bit内存块进行摘要(杂凑)处理,
    @param      hash  存放计算hash结果的的数组
    @param      block 要计算的处理得内存块
    */
    static void zen_sha1_process_block(uint32_t hash[5],
                                       const uint32_t block[ZEN_SHA1_BLOCK_SIZE / 4])
    {
        size_t        t;
        uint32_t      wblock[80];
        register uint32_t      a, b, c, d, e, temp;
    
        //SHA1算法处理的内部数据要求是大头党的,在小头的环境转换
    #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
        swap_uint32_memcpy(wblock, block, ZEN_SHA1_BLOCK_SIZE);
    #else
        ::memcpy(wblock, block, ZEN_SHA1_BLOCK_SIZE);
    #endif
    
        //处理
        for (t = 16; t < 80; t++)
        {
            wblock[t] = ROTL32(wblock[t - 3] ^ wblock[t - 8] ^ wblock[t - 14] ^ wblock[t - 16], 1);
        }
    
        a = hash[0];
        b = hash[1];
        c = hash[2];
        d = hash[3];
        e = hash[4];
    
        for (t = 0; t < 20; t++)
        {
            /* the following is faster than ((B & C) | ((~B) & D)) */
            temp =  ROTL32(a, 5) + (((c ^ d) & b) ^ d)
                    + e + wblock[t] + 0x5A827999;
            e = d;
            d = c;
            c = ROTL32(b, 30);
            b = a;
            a = temp;
        }
    
        for (t = 20; t < 40; t++)
        {
            temp = ROTL32(a, 5) + (b ^ c ^ d) + e + wblock[t] + 0x6ED9EBA1;
            e = d;
            d = c;
            c = ROTL32(b, 30);
            b = a;
            a = temp;
        }
    
        for (t = 40; t < 60; t++)
        {
            temp = ROTL32(a, 5) + ((b & c) | (b & d) | (c & d))
                   + e + wblock[t] + 0x8F1BBCDC;
            e = d;
            d = c;
            c = ROTL32(b, 30);
            b = a;
            a = temp;
        }
    
        for (t = 60; t < 80; t++)
        {
            temp = ROTL32(a, 5) + (b ^ c ^ d) + e + wblock[t] + 0xCA62C1D6;
            e = d;
            d = c;
            c = ROTL32(b, 30);
            b = a;
            a = temp;
        }
    
        hash[0] += a;
        hash[1] += b;
        hash[2] += c;
        hash[3] += d;
        hash[4] += e;
    }
    
    
    /*!
    @brief      内部函数,处理数据的前面部分(>64字节的部分),每次组成一个64字节的block就进行杂凑处理
    @param      ctx  算法的上下文,记录中间数据,结果等
    @param      msg  要进行计算的数据buffer
    @param      size 长度
    */
    static void zen_sha1_update(sha1_ctx *ctx,
                                const unsigned char *buf, 
                                size_t size)
    {
        //为了让zen_sha1_update可以多次进入,长度可以累计
        ctx->length_ += size;
    
        //每个处理的块都是64字节
        while (size >= ZEN_SHA1_BLOCK_SIZE)
        {
            zen_sha1_process_block(ctx->hash_, reinterpret_cast<const uint32_t *>(buf));
            buf  += ZEN_SHA1_BLOCK_SIZE;
            size -= ZEN_SHA1_BLOCK_SIZE;
        }
    
        ctx->unprocessed_ = size;
    }
    
    
    /*!
    @brief      内部函数,处理数据的最后部分,添加0x80,补0,增加长度信息
    @param      ctx    算法的上下文,记录中间数据,结果等
    @param      msg    要进行计算的数据buffer
    @param      result 返回的结果
    */
    static void zen_sha1_final(sha1_ctx *ctx, 
                               const unsigned char *msg,
                               size_t size, 
                               unsigned char *result)
    {
    
        uint32_t message[ZEN_SHA1_BLOCK_SIZE / 4];
    
        //保存剩余的数据,我们要拼出最后1个(或者两个)要处理的块,前面的算法保证了,最后一个块肯定小于64个字节
        if (ctx->unprocessed_)
        {
            memcpy(message, msg + size - ctx->unprocessed_, static_cast<size_t>( ctx->unprocessed_));
        }
    
        //得到0x80要添加在的位置(在uint32_t 数组中),
        uint32_t index = ((uint32_t)ctx->length_ & 63) >> 2;
        uint32_t shift = ((uint32_t)ctx->length_ & 3) * 8;
    
        //添加0x80进去,并且把余下的空间补充0
        message[index]   &= ~(0xFFFFFFFF << shift);
        message[index++] ^= 0x80 << shift;
    
        //如果这个block还无法处理,其后面的长度无法容纳长度64bit,那么先处理这个block
        if (index > 14)
        {
            while (index < 16)
            {
                message[index++] = 0;
            }
    
            zen_sha1_process_block(ctx->hash_, message);
            index = 0;
        }
    
        //补0
        while (index < 14)
        {
            message[index++] = 0;
        }
    
        //保存长度,注意是bit位的长度,这个问题让我看着郁闷了半天,
        uint64_t data_len = (ctx->length_) << 3;
    
        //注意SHA1算法要求的64bit的长度是大头BIG-ENDIAN,在小头的世界要进行转换
    #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
        data_len = ZEN_SWAP_UINT64(data_len);
    #endif
    
        message[14] = (uint32_t) (data_len & 0x00000000FFFFFFFF);
        message[15] = (uint32_t) ((data_len & 0xFFFFFFFF00000000ULL) >> 32);
    
        zen_sha1_process_block(ctx->hash_, message);
    
        //注意结果是大头党的,在小头的世界要进行转换
    #if ZEN_BYTES_ORDER == ZEN_LITTLE_ENDIAN
        swap_uint32_memcpy(result, &ctx->hash_, ZEN_SHA1_HASH_SIZE);
    #else
        memcpy(result, &ctx->hash_, ZEN_SHA1_HASH_SIZE);
    #endif
    }
    
    
    
    //计算一个内存数据的SHA1值
    unsigned char *ZEN_LIB::sha1(const unsigned char *msg,
                                 size_t size,
                                 unsigned char result[ZEN_SHA1_HASH_SIZE])
    {
        assert(result != NULL);
    
        sha1_ctx ctx;
        zen_sha1_init(&ctx);
        zen_sha1_update(&ctx, msg, size);
        zen_sha1_final(&ctx, msg, size, result);
        return result;
    }
    
    int main(int /*argc*/, char * /*argv*/[])
    {
    
        int ret = 0;
        static unsigned char test_buf[7][81] =
        {
            { "" }, 
            { "a" },
            { "abc" },
            { "message digest" },
            { "abcdefghijklmnopqrstuvwxyz" },
            { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" },
            { "12345678901234567890123456789012345678901234567890123456789012345678901234567890" }
        };
    
        static const size_t test_buflen[7] =
        {
            0, 1, 3, 14, 26, 62, 80
        };
    
        static const unsigned char md5_test_sum[7][16] =
        {
            { 0xD4, 0x1D, 0x8C, 0xD9, 0x8F, 0x00, 0xB2, 0x04,  0xE9, 0x80, 0x09, 0x98, 0xEC, 0xF8, 0x42, 0x7E },
            { 0x0C, 0xC1, 0x75, 0xB9, 0xC0, 0xF1, 0xB6, 0xA8,  0x31, 0xC3, 0x99, 0xE2, 0x69, 0x77, 0x26, 0x61 },
            { 0x90, 0x01, 0x50, 0x98, 0x3C, 0xD2, 0x4F, 0xB0,  0xD6, 0x96, 0x3F, 0x7D, 0x28, 0xE1, 0x7F, 0x72 },
            { 0xF9, 0x6B, 0x69, 0x7D, 0x7C, 0xB7, 0x93, 0x8D,  0x52, 0x5A, 0x2F, 0x31, 0xAA, 0xF1, 0x61, 0xD0 },
            { 0xC3, 0xFC, 0xD3, 0xD7, 0x61, 0x92, 0xE4, 0x00,  0x7D, 0xFB, 0x49, 0x6C, 0xCA, 0x67, 0xE1, 0x3B },
            { 0xD1, 0x74, 0xAB, 0x98, 0xD2, 0x77, 0xD9, 0xF5,  0xA5, 0x61, 0x1C, 0x2C, 0x9F, 0x41, 0x9D, 0x9F },
            { 0x57, 0xED, 0xF4, 0xA2, 0x2B, 0xE3, 0xC9, 0x55,  0xAC, 0x49, 0xDA, 0x2E, 0x21, 0x07, 0xB6, 0x7A }
        };
        unsigned char result[32] ={0};
    
        for(size_t i=0;i<7;++i)
        {
            ZEN_LIB::md5(test_buf[i],test_buflen[i],result);
            ret = memcmp(result,md5_test_sum[i],16);
            if (ret != 0)
            {
                assert(false);
            }
        }
    
        static const unsigned char sha1_test_sum[7][20] =
        {
            { 0xda,0x39,0xa3,0xee,0x5e,0x6b,0x4b,0x0d,0x32,0x55,0xbf,0xef,0x95,0x60,0x18,0x90,0xaf,0xd8,0x07,0x09 },
            { 0x86,0xf7,0xe4,0x37,0xfa,0xa5,0xa7,0xfc,0xe1,0x5d,0x1d,0xdc,0xb9,0xea,0xea,0xea,0x37,0x76,0x67,0xb8 },
            { 0xa9,0x99,0x3e,0x36,0x47,0x06,0x81,0x6a,0xba,0x3e,0x25,0x71,0x78,0x50,0xc2,0x6c,0x9c,0xd0,0xd8,0x9d },
            { 0xc1,0x22,0x52,0xce,0xda,0x8b,0xe8,0x99,0x4d,0x5f,0xa0,0x29,0x0a,0x47,0x23,0x1c,0x1d,0x16,0xaa,0xe3 },
            { 0x32,0xd1,0x0c,0x7b,0x8c,0xf9,0x65,0x70,0xca,0x04,0xce,0x37,0xf2,0xa1,0x9d,0x84,0x24,0x0d,0x3a,0x89 },
            { 0x76,0x1c,0x45,0x7b,0xf7,0x3b,0x14,0xd2,0x7e,0x9e,0x92,0x65,0xc4,0x6f,0x4b,0x4d,0xda,0x11,0xf9,0x40 },
            { 0x50,0xab,0xf5,0x70,0x6a,0x15,0x09,0x90,0xa0,0x8b,0x2c,0x5e,0xa4,0x0f,0xa0,0xe5,0x85,0x55,0x47,0x32 },
        };
        for(size_t i=0;i<7;++i)
        {
            ZEN_LIB::sha1(test_buf[i],test_buflen[i],result);
            ret = memcmp(result,sha1_test_sum[i],20);
            if (ret != 0)
            {
                assert(false);
            }
        }
        return 0;
    }
  • 相关阅读:
    51Nod 1239 欧拉函数之和
    51Nod 1244 莫比乌斯函数之和
    BZOJ 4805: 欧拉函数求和
    BZOJ 3944: Sum
    3.25阅读摘抄
    生活整洁之道
    1064. 朋友数(20)
    1063. 计算谱半径(20)
    1061. 判断题(15)
    1062. 最简分数(20)
  • 原文地址:https://www.cnblogs.com/duyingxuan/p/6085548.html
Copyright © 2020-2023  润新知