• STM32学习笔记2(TIM增强模块向上溢出 & 输出比较)


    TIM模块定时器向上溢出 & 输出比较

    首先我们必须肯定ST公司的实力,也承认STM32的确是一款非常不错的Cortex-M3核单片机,但是,他的手册实在是让人觉得无法理解,尤其是其中的TIM模块,没有条理可言,看了两天几乎还是不知所云,让人很是郁闷。同时配套的固件库的说明也很难和手册上的寄存器对应起来,研究起来非常费劲!功能强大倒是真的,但至少也应该配套一个让人看的明白的说明吧~~
    两天时间研究了STM32定时器的最最基础的部分,把定时器最基础的两个功能实现了,余下的功能有待继续学习。
    首先有一点需要注意:FWLib固件库目前的最新版应该是V2.0.x,V1.0.x版本固件库中,TIM1模块被独立出来,调用的函数与其他定时器不同;在V2.0系列版本中,取消了TIM1.h,所有的TIM模块统一调用TIM.h即可。网络上流传的各种代码有许多是基于v1版本的固件库,在移植到v2版本固件库时,需要做些修改。本文的所有程序都是基于V2.0固件库。

    以下是定时器向上溢出示例代码:

    C语言: TIM1模块产生向上溢出事件
    //Step1.时钟设置:启动TIM1
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);

    //Step2.中断NVIC设置:允许中断,设置优先级
    NVIC_InitStructure.NVIC_IRQChannel = TIM1_UP_IRQChannel;     //更新事件
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;    //抢占优先级0
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;           //响应优先级1
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;              //允许中断
    NVIC_Init(&NVIC_InitStructure);                              //写入设置

    //Step3.TIM1模块设置
    void TIM_Configuration(void)
    {
    TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;
    TIM_OCInitTypeDef TIM_OCInitStructure;


    //TIM1 使用内部时钟
    //TIM_InternalClockConfig(TIM1);

    //TIM1基本设置
    //设置预分频器分频系数71,即APB2=72M, TIM1_CLK=72/72=1MHz
    //TIM_Period(TIM1_ARR)=1000,计数器向上计数到1000后产生更新事件,计数值归零
    //向上计数模式
    //TIM_RepetitionCounter(TIM1_RCR)=0,每次向上溢出都产生更新事件
    TIM_BaseInitStructure.TIM_Period = 1000;
    TIM_BaseInitStructure.TIM_Prescaler = 71;
    TIM_BaseInitStructure.TIM_ClockDivision = 0;
    TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_BaseInitStructure.TIM_RepetitionCounter = 0;
    TIM_TimeBaseInit(TIM1, &TIM_BaseInitStructure);

    //清中断,以免一启用中断后立即产生中断
    TIM_ClearFlag(TIM1, TIM_FLAG_Update);
    //使能TIM1中断源
    TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE);

    //TIM1总开关:开启
    TIM_Cmd(TIM1, ENABLE);
    }

    //Step4.中断服务子程序:
    void TIM1_UP_IRQHandler(void)
    {
    GPIOC->ODR ^= (1<<4);                          //闪灯
    TIM_ClearITPendingBit(TIM1, TIM_FLAG_Update); //清中断
    }

    下面是输出比较功能实现TIM1_CH1管脚输出指定频率的脉冲:

    C语言: TIM1模块实现输出比较,自动翻转并触发中断
    //Step1.启动TIM1,同时还要注意给相应功能管脚启动时钟
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);

    //Step2. PA.8口设置为TIM1的OC1输出口
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);

    //Step3.使能TIM1的输出比较匹配中断
    NVIC_InitStructure.NVIC_IRQChannel = TIM1_CC_IRQChannel;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);

    //Step4. TIM模块设置
    void TIM_Configuration(void)
    {
         TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;
         TIM_OCInitTypeDef TIM_OCInitStructure;


         //TIM1基本计数器设置
         TIM_BaseInitStructure.TIM_Period = 0xffff;                       //这里必须是65535
         TIM_BaseInitStructure.TIM_Prescaler = 71;                        //预分频71,即72分频,得1M
         TIM_BaseInitStructure.TIM_ClockDivision = 0;
         TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
         TIM_BaseInitStructure.TIM_RepetitionCounter = 0;
         TIM_TimeBaseInit(TIM1, &TIM_BaseInitStructure);

         //TIM1_OC1模块设置
         TIM_OCStructInit(& TIM_OCInitStructure);
         TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle;              //管脚输出模式:翻转
         TIM_OCInitStructure.TIM_Pulse = 2000;                            //翻转周期:2000个脉冲
         TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;    //使能TIM1_CH1通道
         TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;        //输出为正逻辑
         TIM_OC1Init(TIM1, &TIM_OCInitStructure);                         //写入配置

         //清中断
         TIM_ClearFlag(TIM1, TIM_FLAG_CC1);

         //TIM1中断源设置,开启相应通道的捕捉比较中断
         TIM_ITConfig(TIM1, TIM_IT_CC1, ENABLE);

         //TIM1开启
         TIM_Cmd(TIM1, ENABLE);
         //通道输出使能
         TIM_CtrlPWMOutputs(TIM1, ENABLE);
    }

    Step5.中断服务子程序
    void TIM1_CC_IRQHandler(void)
    {
         u16 capture;
         if(TIM_GetITStatus(TIM1, TIM_IT_CC1) == SET)
         {
             TIM_ClearITPendingBit(TIM1, TIM_IT_CC1 );
             capture = TIM_GetCapture1(TIM1);
             TIM_SetCompare1(TIM1, capture + 2000);
             //这里解释下:
             //将TIM1_CCR1的值增加2000,使得下一个TIM事件也需要2000个脉冲,
             //另一种方式是清零脉冲计数器
             //TIM_SetCounter(TIM2,0x0000);
         }
    }

    关于TIM的操作,要注意的是STM32处理器因为低功耗的需要,各模块需要分别独立开启时钟,所以,一定不要忘记给用到的模块和管脚使能时钟,因为这个原因,浪费了我好多时间阿~~!


    TIM模块产生PWM

    这个是STM32的PWM输出模式,STM32的TIM1模块是增强型的定时器模块,天生就是为电机控制而生,可以产生3组6路PWM,同时每组2路PWM为互补,并可以带有死区,可以用来驱动H桥。
    下面的代码,是利用TIM1模块的1、2通道产生一共4路PWM的代码例子,类似代码也可以参考ST的固件库中相应example
    C语言: TIM1模块产生PWM,带死区
       
    //Step1.开启TIM和相应端口时钟
    //启动GPIO
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | \
                            RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD,\
                            ENABLE);
    //启动AFIO
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
    //启动TIM1
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);

    //Step2. GPIO做相应设置,为AF输出
    //PA.8/9口设置为TIM1的OC1输出口
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);

    //PB.13/14口设置为TIM1_CH1N和TIM1_CH2N输出口
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOB, &GPIO_InitStructure);

    //Step3. TIM模块初始化
    void TIM_Configuration(void)
    {
         TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;
         TIM_OCInitTypeDef TIM_OCInitStructure;
         TIM_BDTRInitTypeDef TIM_BDTRInitStructure;

         //TIM1基本计数器设置(设置PWM频率)
         //频率=TIM1_CLK/(ARR+1)
         TIM_BaseInitStructure.TIM_Period = 1000-1;
         TIM_BaseInitStructure.TIM_Prescaler = 72-1;
         TIM_BaseInitStructure.TIM_ClockDivision = 0;
         TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
         TIM_BaseInitStructure.TIM_RepetitionCounter = 0;
         TIM_TimeBaseInit(TIM1, &TIM_BaseInitStructure);
         //启用ARR的影子寄存器(直到产生更新事件才更改设置)
         TIM_ARRPreloadConfig(TIM1, ENABLE);


         //TIM1_OC1模块设置(设置1通道占空比)
         TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
         TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
         TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
         TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
         TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;
         TIM_OCInitStructure.TIM_Pulse = 120;
         TIM_OC1Init(TIM1, &TIM_OCInitStructure);
         //启用CCR1寄存器的影子寄存器(直到产生更新事件才更改设置)
         TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);

         //TIM2_OC2模块设置(设置2通道占空比)
         TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
         TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
         TIM_OCInitStructure.TIM_Pulse = 680;
         TIM_OC2Init(TIM1, &TIM_OCInitStructure);
         //启用CCR2寄存器的影子寄存器(直到产生更新事件才更改设置)
         TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);
      
         //死区设置
         TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
         TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
         TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF;
         TIM_BDTRInitStructure.TIM_DeadTime = 0x90;   //这里调整死区大小0-0xff
         TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;
         TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
         TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;
         TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);
      
         //TIM1开启
         TIM_Cmd(TIM1, ENABLE);
         //TIM1_OC通道输出PWM(一定要加)
         TIM_CtrlPWMOutputs(TIM1, ENABLE);

    }

    其实,PWM模块还可以有很多花样可以玩,比方在异常时(如CPU时钟有问题),可以紧急关闭输出,以免发生电路烧毁等严重事故

  • 相关阅读:
    Elasticsearch 快速入门
    Linux 非互联网环境安装依赖包
    linux 安装mysql(rpm文件安装)
    Nginx安装与配置文件nginx.conf详解
    Linux 知识
    MySQL Windows安装连接
    post请求body格式
    MySQL 数据库备份
    SOAP与restful webservice
    大数据架构工具hadoop
  • 原文地址:https://www.cnblogs.com/dustinzhu/p/3886757.html
Copyright © 2020-2023  润新知