• 常用不等式例题整理


    1.设(a,b,c>0)(abc=1),求证:(a^2+b^2+c^2leqslant a^3+b^3+c^3)
    解:不妨设(ageqslant bgeqslant c),由切比雪夫不等式,有(a^3+b^3+c^3geqslant frac{(a+b+c)(a^2+b^2+c^2)}{3}geqslant a^2+b^2+c^2)


    2.设(a,b,c>0)(a^2+b^2+c^2=1),求证:(frac{a}{1-a^2}+frac{b}{1-b^2}+frac{c}{1-c^2}geqslant frac{3}{2})
    解:(ecausesum frac{a}{1-a^2}=sum frac{a^2}{a(1-a^2)}\ecause[a(1-a^2)]^2=frac{1}{2}cdot 2a^2cdot (1-a^2)cdot (1-a^2)leqslant frac{1}{2}cdot (frac{2}{3})^3=frac{4}{27})
    ( herefore a(1-a^2)leqslant frac{2}{3sqrt{3}})
    同理,(b(1-b^2)leqslant frac{2}{3sqrt{3}},c(1-c^2)leqslant frac{2}{3sqrt{3}})
    ( herefore LHSgeqslant sum frac{a^2}{frac{2}{3sqrt{3}}}=frac{3sqrt{3}}{2})


    3.设(alpha,eta,gammain(0,frac{pi}{4})),且(alpha+eta+gamma=frac{pi}{2}),求证:(tan^2alpha+tan^2eta+tan^2gamma<2)
    解:考虑局部不等式(tan^2 x<frac{4}{pi}x),其中(xin(0,frac{pi}{4})),求导之后易得本式正确性。
    ( herefore tan^2alpha<frac{4}{pi}alpha,tan^2eta<frac{4}{pi}eta,tan^2gamma<frac{4}{pi}gamma)
    三式相加,即可得(tan^2alpha+tan^2eta+tan^2gamma<2)

  • 相关阅读:
    map & reduce
    Generator
    切片
    函数参数
    Dict & Set
    list,tuple
    selenium鼠标和键盘操作
    selenium元素定位以及点击事件
    css定位
    xpath
  • 原文地址:https://www.cnblogs.com/dummyummy/p/9248603.html
Copyright © 2020-2023  润新知