思路
分三种情况讨论:
1.有环
那显然是对于环长取个(gcd)
2.有类环
也就是这种情况
1→2→3→4→5→6→7,1→8→9→7
假设第一条链的长度为(l_1),第二条为(l_2),那么(l_1)和(l_2)需要满足(l_1equiv l_2(mod k)),也就是(k|(l_1-l_2))。如果我们建权值为(-1)的反向边的话,找出来的环就涵盖了这种情况,并且取(gcd)就能满足等式
3.有链
对答案无影响
最后还需要加一个特判,就是只有链的情况
具体可以看代码
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <string>
#include <vector>
#include <cmath>
#include <ctime>
#include <queue>
#include <map>
#include <set>
using namespace std;
#define IINF 0x3f3f3f3f3f3f3f3fLL
#define ull unsigned long long
#define pii pair<int, int>
#define uint unsigned int
#define mii map<int, int>
#define lbd lower_bound
#define ubd upper_bound
#define INF 0x3f3f3f3f
#define vi vector<int>
#define ll long long
#define mp make_pair
#define pb push_back
#define N 100000
#define M 1000000
struct Edge {
int next, to, w;
}e[2*M+5];
int n, m, maxans, minans;
int fa[N+5], head[N+5], eid, vis[N+5], d[N+5];
int mmax[N+5], mmin[N+5];
int find(int x) {
return fa[x] == x ? x : fa[x] = find(fa[x]);
}
int gcd(int a, int b) {
return !b ? a : gcd(b, a%b);
}
void addEdge(int from, int to, int w) {
e[++eid].next = head[from];
e[eid].to = to;
e[eid].w = w;
head[from] = eid;
}
void dfs(int u, int x) {
if(vis[u]) {
maxans = gcd(abs(x-d[u]), maxans);
return ;
}
vis[u] = 1;
mmin[find(u)] = min(mmin[find(u)], x);
mmax[find(u)] = max(mmax[find(u)], x);
d[u] = x;
for(int i = head[u]; i; i = e[i].next) {
int v = e[i].to, w = e[i].w;
dfs(v, x+w);
}
}
int main() {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i) fa[i] = i;
for(int i = 1, x, y; i <= m; ++i) {
scanf("%d%d", &x, &y);
addEdge(x, y, 1), addEdge(y, x, -1);
int fx = find(x), fy = find(y);
if(fx != fy) fa[fy] = fx;
}
memset(mmin, 0x3f, sizeof mmin);
for(int i = 1; i <= n; ++i) {
if(vis[i]) continue;
dfs(i, 0);
}
for(int i = 3; i <= maxans; ++i) {
if(maxans%i == 0) {
minans = i;
break;
}
}
if(!maxans)
for(int i = 1; i <= n; ++i)
if(find(i) == i)
maxans += mmax[i]-mmin[i]+1;
if(!minans) minans = 3;
if(maxans < 3) printf("-1 -1
");
else printf("%d %d
", maxans, minans);
return 0;
}