• 第十三次作业-垃圾邮件分类2


    1.读取

    file_path = r'C:Userszgz机器学习RobitStuSMSSpamCollection'
    email = open(file_path,'r',encoding='utf-8')  # 打开文件
    email_data = []  # 列表存邮件
    email_label = []  # 存标签
    csv_reader = csv.reader(email,delimiter = '	')
    for line in csv_reader:
        email_label.append(line[0])
        email_data.append(preprocessing(line[1]))  # 每封邮件做预处理
    email.close()
    print("总的邮件数",len(email_data))

    2.数据预处理

    # 根据词性,生成还原参数 pos
    def get_wordnet_pos(treebank_tag):
    if treebank_tag.startswith("J"):
    return nltk.corpus.wordnet.ADJ
    elif treebank_tag.startswith("V"):
    return nltk.corpus.wordnet.VERB
    elif treebank_tag.startswith("N"):
    return nltk.corpus.wordnet.NOUN
    elif treebank_tag.startswith("R"):
    return nltk.corpus.wordnet.ADV
    else:
    return nltk.corpus.wordnet.NOUN
    
    
    # 预处理
    def preprocessing(text):
    tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] # 分词
    stops = stopwords.words('english') # 停用词
    tokens = [token for token in tokens if token not in stops] # 去掉停用词
    tokens = [token.lower() for token in tokens if len(token) >= 3]
    
    tag = nltk.pos_tag(tokens) # 词性标注
    imtzr = WordNetLemmatizer()
    tokens = [imtzr.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)] # 词性还原
    preprocessed_text = ''.join(tokens)
    return preprocessed_text

    3.数据划分—训练集和测试集数据划分

    from sklearn.model_selection import train_test_split

    x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)

    import numpy as np
    from sklearn.model_selection import train_test_split
     
    sms_data = np.array(sms_data)
    sms_label = np.array(sms_label)
    # test_size 指定划分的测试集样本占比
    x_train, x_test, y_train, y_test = train_test_split(sms_data, sms_label, test_size=0.2, random_state=0,
                                                        stratify=sms_label)
    print("原数据集大小:",len(sms_data))
    print("训练集大小:",len(x_train))
    print("测试集大小:",len(x_test))

    4.文本特征提取

    sklearn.feature_extraction.text.CountVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer

    sklearn.feature_extraction.text.TfidfVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer

    from sklearn.feature_extraction.text import TfidfVectorizer

    tfidf2 = TfidfVectorizer()

    观察邮件与向量的关系

    向量还原为邮件

    from sklearn.feature_extraction.text import TfidfVectorizer
    
    vectorizer = TfidfVectorizer()
    X_train = vectorizer.fit_transform(x_train)
    X_test = vectorizer.transform(x_test)
    
    print(X_train.toarray().shape)
    print(X_test.toarray().shape)

     

    4.模型选择

    from sklearn.naive_bayes import GaussianNB

    from sklearn.naive_bayes import MultinomialNB

    说明为什么选择这个模型?

    from sklearn.naive_bayes import MultinomialNB
    
    clf = MultinomialNB().fit(X_train, y_train)
    y_nb_pred = clf.predict(X_test)
    # x_test预测结果
    print(y_nb_pred.shape,y_nb_pred)

    5.模型评价:混淆矩阵,分类报告

    from sklearn.metrics import confusion_matrix

    confusion_matrix = confusion_matrix(y_test, y_predict)

    说明混淆矩阵的含义:

    混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用n行n列的矩阵形式来表示。

    混淆矩阵的每一列代表了预测类别 ,每一列的总数表示预测为该类别的数据的数目;每一行代表了数据的真实归属类别 ,每一行的数据总数表示该类别的数据实例的数目。

    矩阵中的这四个数值,经常被用来定义其他一些度量。

    from sklearn.metrics import classification_report

    说明准确率、精确率、召回率、F值分别代表的意义:

     准确率是我们最常见的评价指标,而且很容易理解,就是被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好。

    6.比较与总结

    如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?

    CountVectorizer:只考虑词汇在文本中出现的频率,属于词袋模型特征。

    TfidfVectorizer: 除了考量某词汇在文本出现的频率,还关注包含这个词汇的所有文本的数量。能够削减高频没有意义的词汇出现带来的影响, 挖掘更有意义的特征。属于Tfidf特征。

    相比之下,文本条目越多,Tfid的效果会越显著。

    CountVectorizer与TfidfVectorizer相比,对于负类的预测更加准确,而正类的预测则稍逊色。但总体预测正确率也比TfidfVectorizer稍高,相比之下似乎CountVectorizer更适合进行预测。

  • 相关阅读:
    [LINUX-05]Linux的进程线程及调度
    如何感性地理解EM算法?
    [LINUX-04]linux进程、调度、线程、进程上下文等几点理解
    centos定时删除log文件
    关于 Nginx 配置的一些疑惑, Nginx 根据cookie 进行rewrite
    oracle中如何创建表的自增ID(通过序列)
    Windows下PHP7/5.6以上版本 如何连接Oracle 12c,并使用PDO
    Tomcat不能访问ln -s软连接文件夹的前因后果
    rm命令删除文件时排除特定文件
    nginx中的url转发
  • 原文地址:https://www.cnblogs.com/dulidemao/p/13070846.html
Copyright © 2020-2023  润新知