• mapreduce实现学生平均成绩


    思路:

      首先从文本读入一行数据,按空格对字符串进行切割,切割后包含学生姓名和某一科的成绩,map输出key->学生姓名    value->某一个成绩

      然后在reduce里面对成绩进行遍历求和,求平均数,然后输出key->学生姓名    value->平均成绩

      源数据:

       chines.txt 

    zhangsan    78
    lisi    89
    wangwu    96
    zhaoliu    67
    

      english.txt

    zhangsan    80
    lisi    82
    wangwu    84
    zhaoliu    86
    

      math.txt

    zhangsan    88
    lisi    99
    wangwu    66
    zhaoliu    77
    

      源代码:

    package com.duking.hadoop;
    
    import java.io.IOException;
    import java.util.Iterator;
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Mapper.Context;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.util.GenericOptionsParser;
    
    public class Score {
    
    	public static class Map extends
    
    	Mapper<Object, Text, Text, IntWritable> {
    
    		// 实现map函数
    
    		public void map(Object key, Text value, Context context)
    
    		throws IOException, InterruptedException {
    
    			// 将输入的纯文本文件的数据转化成String
    
    			String line = value.toString();
    
    			// 将输入的数据首先按行进行分割
    
    			StringTokenizer tokenizerArticle = new StringTokenizer(line);  //以空格分隔字符串
    
    			// 分别对每一行进行处理
    
    			while (tokenizerArticle.hasMoreElements()) {
    
    				String strName= tokenizerArticle.nextToken();  // 学生姓名部分
    				
    				String strScore = tokenizerArticle.nextToken();// 成绩部分
    				
                    Text name = new Text(strName);
    
                    int scoreInt = Integer.parseInt(strScore);
    				// 输出姓名和成绩
    
    				context.write(name, new IntWritable(scoreInt));
    
    			}
    
    		}
    
    	}
    
    	public static class Reduce extends
    
    	Reducer<Text, IntWritable, Text, IntWritable> {
    
    		// 实现reduce函数
    
    		public void reduce(Text key, Iterable<IntWritable> values,
    
    		Context context) throws IOException, InterruptedException {
    
    			int sum = 0;
    
    			int count = 0;
    
    			Iterator<IntWritable> iterator = values.iterator();  //循环遍历成绩
    
    			while (iterator.hasNext()) {
    
    				sum += iterator.next().get();// 计算总分
    
    				count++;// 统计总的科目数
    
    			}
    
    			int average = (int) sum / count;// 计算平均成绩
    
    			context.write(key, new IntWritable(average));
    
    		}
    
    	}
    
    	public static void main(String[] args) throws Exception {
    
    		Configuration conf = new Configuration();
    
    		conf.set("mapred.job.tracker", "192.168.60.129:9000");
    
    		// 指定带运行参数的目录为输入输出目录
    		String[] otherArgs = new GenericOptionsParser(conf, args)
    				.getRemainingArgs();
    
    		/*
    		 * 指定工程下的input2为文件输入目录 output2为文件输出目录 String[] ioArgs = new String[] {
    		 * "input2", "output2" };
    		 * 
    		 * String[] otherArgs = new GenericOptionsParser(conf, ioArgs)
    		 * .getRemainingArgs();
    		 */
    
    		if (otherArgs.length != 2) { // 判断路径参数是否为2个
    
    			System.err.println("Usage: Data Deduplication <in> <out>");
    
    			System.exit(2);
    
    		}
    
    		// set maprduce job name
    		Job job = new Job(conf, "Score Average");
    
    		job.setJarByClass(Score.class);
    
    		// 设置Map、Combine和Reduce处理类
    
    		job.setMapperClass(Map.class);
    
    		job.setCombinerClass(Reduce.class);
    
    		job.setReducerClass(Reduce.class);
    
    		// 设置输出类型
    
    		job.setOutputKeyClass(Text.class);
    
    		job.setOutputValueClass(IntWritable.class);
    
    		// 设置输入和输出目录
    
    		FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    
    		FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    
    		System.exit(job.waitForCompletion(true) ? 0 : 1);
    
    	}
    
    }
    

      

  • 相关阅读:
    学习vim命令:“:w !sudo tee %”
    mac下安装和卸载软件
    很好用的在线markdown编辑器
    doc2vec 利用gensim 生成文档向量
    C语言经典算法100例-024-求数列的前20 项和,2/1,3/2,5/3,8/5...
    C语言经典算法100例-023-打印菱形
    C语言经典算法100例-022-乒乓球比赛名单问题
    C语言经典算法100例-021-猴子吃桃问题
    C语言经典算法100例-020-小球自由下落问题
    C语言经典算法100例-019-求完数
  • 原文地址:https://www.cnblogs.com/duking1991/p/6065963.html
Copyright © 2020-2023  润新知