Cocos2d-x 3.2:定时器的使用和原理探究(2)
本文转载至深入了解Cocos2d-x 3.x:定时器的使用和原理探究(2)
上一篇说到定时器的使用方法,这篇主要分析它的实现原理。
1.哈希链表
Cocos2d-x封装了一个结构体,叫做UT_hash_handle,只要在自定义的结构体中声明这个结构体变量,就实现了哈希链表,并且能使用一系列的哈希链表专用的宏。这个结构体的具体实现如下:
1
2
3
4
5
6
7
8
9
10
|
typedef struct UT_hash_handle { struct UT_hash_table *tbl; void *prev; /* prev element in app order */ void *next; /* next element in app order */ struct UT_hash_handle *hh_prev; /* previous hh in bucket order */ struct UT_hash_handle *hh_next; /* next hh in bucket order */ void *key; /* ptr to enclosing struct's key */ unsigned keylen; /* enclosing struct's key len */ unsigned hashv; /* result of hash-fcn(key) */ } UT_hash_handle; |
这个结构体主要实现的是一个双向链表,具体实现哈希验证的还要看UT_hash_table 结构体:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
typedef struct UT_hash_table { UT_hash_bucket *buckets; unsigned num_buckets, log2_num_buckets; unsigned num_items; struct UT_hash_handle *tail; /* tail hh in app order, for fast append */ ptrdiff_t hho; /* hash handle offset (byte pos of hash handle in element */ /* in an ideal situation (all buckets used equally), no bucket would have * more than ceil(#items/#buckets) items. that's the ideal chain length. */ unsigned ideal_chain_maxlen; /* nonideal_items is the number of items in the hash whose chain position * exceeds the ideal chain maxlen. these items pay the penalty for an uneven * hash distribution; reaching them in a chain traversal takes >ideal steps */ unsigned nonideal_items; /* ineffective expands occur when a bucket doubling was performed, but * afterward, more than half the items in the hash had nonideal chain * positions. If this happens on two consecutive expansions we inhibit any * further expansion, as it's not helping; this happens when the hash * function isn't a good fit for the key domain. When expansion is inhibited * the hash will still work, albeit no longer in constant time. */ unsigned ineff_expands, noexpand; uint32_t signature; /* used only to find hash tables in external analysis */ #ifdef HASH_BLOOM uint32_t bloom_sig; /* used only to test bloom exists in external analysis */ uint8_t *bloom_bv; char bloom_nbits; #endif } UT_hash_table; |
然后看看与哈希链表相关的宏定义,使用这些宏能很方便的插入链表,删除链表,查找链表。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
/** * 查找元素 * head:哈希链表的头指针 * findptr:要查找的元素指针 * out:查找结果 */ HASH_FIND_PTR(head,findptr,out) /** * 添加元素 * head:哈希链表的头指针 * ptrfield:要添加的元素指针 * add:要添加的哈希链表元素 */ HASH_ADD_PTR(head,ptrfield,add) /** * 替换元素 * head:哈希链表的头指针 * ptrfield:要替换的元素指针 * add:要替换的哈希链表元素 */ HASH_REPLACE_PTR(head,ptrfield,add) /** * 删除 * head:哈希链表的头指针 * delptr:要删除的元素指针 */ HASH_DEL(head,delptr) |
以上是引擎中实现的哈希链表的相关知识,接下来再看看与定时器相关的哈希链表。定时器的实现中,将一个定时器存储在哈希链表中,那么在scheduler是如何实现以后哈希链表的结构体的呢?如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
// 不同优先级的update定时器的双向链表 typedef struct _listEntry { struct _listEntry *prev, *next; ccSchedulerFunc callback; void *target; int priority; bool paused; bool markedForDeletion; // selector will no longer be called and entry will be removed at end of the next tick } tListEntry; //内置的update定时器 typedef struct _hashUpdateEntry { tListEntry **list; // Which list does it belong to ? tListEntry *entry; // entry in the list void *target; ccSchedulerFunc callback; UT_hash_handle hh; } tHashUpdateEntry; // 自定义定时器 typedef struct _hashSelectorEntry { ccArray *timers; void *target; int timerIndex; Timer *currentTimer; bool currentTimerSalvaged; bool paused; UT_hash_handle hh; } tHashTimerEntry; |
以上就是相关的哈希链表的知识,接下来从定义定时器的函数Node::schedule中一步一步的分析定时器是如何加入到哈希链表中的。
2.如何定义自定义定时器
首先,上一篇文章中说到了很多个自定义定时器的函数,但是最终会调用的函数只有两个,分别是
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
/** * 定义一个自定义的定时器 * selector:回调函数 * interval:重复间隔时间,重复执行间隔的时间,如果传入0,则表示每帧调用 * repeat:重复运行次数,如果传入CC_REPEAT_FOREVER则表示无限循环 * delay:延时秒数,延迟delay秒开始执行第一次回调 */ void schedule(SEL_SCHEDULE selector, float interval, unsigned int repeat, float delay); /** * 使用lambda函数定义一个自定义定时器 * callback:lambda函数 * interval:重复间隔时间,重复执行间隔的时间,如果传入0,则表示每帧调用 * repeat:重复运行次数,如果传入CC_REPEAT_FOREVER则表示无限循环 * delay:延时秒数,延迟delay秒开始执行第一次回调 * key:lambda函数的Key,用于取消定时器 * @lua NA */ void schedule( const std::function< void ( float )>& callback, float interval, unsigned int repeat, float delay, const std::string &key); |
本文从传统的定义定时器的方法入手,也就是第一个方法。接下来看看这个方法的实现:
1
2
3
4
5
6
7
|
void Node::schedule(SEL_SCHEDULE selector, float interval, unsigned int repeat, float delay) { CCASSERT( selector, "Argument must be non-nil" ); CCASSERT( interval >=0, "Argument must be positive" ); _scheduler->schedule(selector, this , interval , repeat, delay, !_running); } |
看到其实还是调用_scheduler的schedule方法,那么_scheduler又是个什么鬼?
1
|
Scheduler *_scheduler; ///< scheduler used to schedule timers and updates |
查看定义可以知道是一个Scheduler 的指针,但是这个指针从哪里来?在构造函数中有真相
1
2
3
4
5
6
7
|
Node::Node( void ) { // set default scheduler and actionManager _director = Director::getInstance(); _scheduler = _director->getScheduler(); _scheduler->retain(); } |
是从导演类中引用的。这一块暂时我们不管,接下来深入到_scheduler->schedule函数中分析,如下是函数的具体实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
void Scheduler::schedule(SEL_SCHEDULE selector, Ref *target, float interval, unsigned int repeat, float delay, bool paused) { CCASSERT(target, "Argument target must be non-nullptr" ); //定义并且查找链表元素 tHashTimerEntry *element = nullptr; HASH_FIND_PTR(_hashForTimers, &target, element); //没找到 if (! element) { //创建一个链表元素 element = (tHashTimerEntry *) calloc ( sizeof (*element), 1); element->target = target; //添加到哈希链表中 HASH_ADD_PTR(_hashForTimers, target, element); // Is this the 1st element ? Then set the pause level to all the selectors of this target element->paused = paused; } else { CCASSERT(element->paused == paused, "" ); } //检查这个元素的定时器数组,如果数组为空 则new 10个数组出来备用 if (element->timers == nullptr) { element->timers = ccArrayNew(10); } else { //循环查找定时器数组,看看是不是曾经定义过相同的定时器,如果定义过,则只需要修改定时器的间隔时间 for ( int i = 0; i < element->timers->num; ++i) { TimerTargetSelector *timer = dynamic_cast <TimerTargetSelector*>(element->timers->arr[i]); if (timer && selector == timer->getSelector()) { CCLOG( "CCScheduler#scheduleSelector. Selector already scheduled. Updating interval from: %.4f to %.4f" , timer->getInterval(), interval); timer->setInterval(interval); return ; } } //扩展1个定时器数组 ccArrayEnsureExtraCapacity(element->timers, 1); } //创建一个定时器,并且将定时器加入到当前链表指针的定时器数组中 TimerTargetSelector *timer = new (std:: nothrow ) TimerTargetSelector(); timer->initWithSelector( this , selector, target, interval, repeat, delay); ccArrayAppendObject(element->timers, timer); timer->release(); } |
这一段代码具体分析了如何将自定义定时器加入到链表中,并且在链表中的存储结构是怎么样的,接下来看看内置的Update定时器。
3.如何定义Update定时器
Update定时器的开启方法有两个,分别是:
1
2
3
4
5
6
7
8
9
|
/** * 开启自带的update方法,这个方法会每帧执行一次,默认优先级为0,并且在所有自定义方法执行之前执行 */ void scheduleUpdate( void ); /** * 开启自带的update方法,这个方法会每帧执行一次,设定的优先级越小,越优先执行 */ void scheduleUpdateWithPriority( int priority); |
第一个方法实际上是直接调用第二个方法,并且把优先级设置为0,我们直接看第二个方法就可以了。
1
2
3
4
|
void Node::scheduleUpdateWithPriority( int priority) { _scheduler->scheduleUpdate( this , priority, !_running); } |
具体调用还是要进入到_scheduler->scheduleUpdate。
1
2
3
4
5
6
7
8
9
10
11
12
13
|
/** Schedules the 'update' selector for a given target with a given priority. The 'update' selector will be called every frame. The lower the priority, the earlier it is called. @since v3.0 @lua NA */ template < class T> void scheduleUpdate(T *target, int priority, bool paused) { this ->schedulePerFrame([target]( float dt){ target->update(dt); }, target, priority, paused); } |
可以看到这里主要还是调用了一个schedulePerFrame函数,并且传入了一个lambda函数。这个函数实际上调用的是target->update,接下来走进schedulePerFrame看看它的实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
void Scheduler::schedulePerFrame( const ccSchedulerFunc& callback, void *target, int priority, bool paused) { //定义并且查找链表元素 tHashUpdateEntry *hashElement = nullptr; HASH_FIND_PTR(_hashForUpdates, &target, hashElement); //如果找到,就直接改优先级 if (hashElement) { // 检查优先级是否改变 if ((*hashElement->list)->priority != priority) { //检查是否被锁定 if (_updateHashLocked) { CCLOG( "warning: you CANNOT change update priority in scheduled function" ); hashElement->entry->markedForDeletion = false ; hashElement->entry->paused = paused; return ; } else { // 在这里先停止到update,后面会加回来 unscheduleUpdate(target); } } else { hashElement->entry->markedForDeletion = false ; hashElement->entry->paused = paused; return ; } } // 优先级为0,加入到_updates0List链表中,并且加入到_hashForUpdates表中 if (priority == 0) { appendIn(&_updates0List, callback, target, paused); } // 优先级小于0,加入到_updatesNegList链表中,并且加入到_hashForUpdates表中 else if (priority < 0) { priorityIn(&_updatesNegList, callback, target, priority, paused); } // 优先级大于0,加入到_updatesPosList链表中,并且加入到_hashForUpdates表中 else { // priority > 0 priorityIn(&_updatesPosList, callback, target, priority, paused); } } |
在这里看上去逻辑还是很清晰的,有两个函数要重点分析一下,分别是
1
2
|
void Scheduler::appendIn(_listEntry **list, const ccSchedulerFunc& callback, void *target, bool paused) void Scheduler::priorityIn(tListEntry **list, const ccSchedulerFunc& callback, void *target, int priority, bool paused) |
第一个用于添加默认优先级,第二个函数用于添加指定优先级的。首先看添加默认优先级的。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
void Scheduler::appendIn(_listEntry **list, const ccSchedulerFunc& callback, void *target, bool paused) { //创建一个链表元素 tListEntry *listElement = new tListEntry(); listElement->callback = callback; listElement->target = target; listElement->paused = paused; listElement->priority = 0; listElement->markedForDeletion = false ; //添加到双向链表中 DL_APPEND(*list, listElement); //创建一个哈希链表元素 tHashUpdateEntry *hashElement = (tHashUpdateEntry *) calloc ( sizeof (*hashElement), 1); hashElement->target = target; hashElement->list = list; hashElement->entry = listElement; //添加到哈希链表中 HASH_ADD_PTR(_hashForUpdates, target, hashElement); } |
接下来看另一个函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
void Scheduler::priorityIn(tListEntry **list, const ccSchedulerFunc& callback, void *target, int priority, bool paused) { //同上一个函数 tListEntry *listElement = new tListEntry(); listElement->callback = callback; listElement->target = target; listElement->priority = priority; listElement->paused = paused; listElement->next = listElement->prev = nullptr; listElement->markedForDeletion = false ; //如果链表为空 if (! *list) { DL_APPEND(*list, listElement); } else { bool added = false ; //保证链表有序 for (tListEntry *element = *list; element; element = element->next) { // 如果优先级小于当前元素的优先级,就在这个元素前面插入 if (priority < element->priority) { if (element == *list) { DL_PREPEND(*list, listElement); } else { listElement->next = element; listElement->prev = element->prev; element->prev->next = listElement; element->prev = listElement; } added = true ; break ; } } //如果新加入的优先级最低,则加入到链表的最后 if (! added) { DL_APPEND(*list, listElement); } } //同上一个函数 tHashUpdateEntry *hashElement = (tHashUpdateEntry *) calloc ( sizeof (*hashElement), 1); hashElement->target = target; hashElement->list = list; hashElement->entry = listElement; HASH_ADD_PTR(_hashForUpdates, target, hashElement); } |
本文简单的分析了哈希链表以及定时器的存储和添加,下一篇文章将分析定时器是如何运转起来的。