• BP算法实例—鸢尾花的分类(Python)


    首先了解下Iris鸢尾花数据集:

           Iris数据集(https://en.wikipedia.org/wiki/Iris_flower_data_set)是常用的分类实验数据集,由Fisher,1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。
    iris以鸢尾花的特征作为数据来源,常用在分类操作中。该数据集由3种不同类型的鸢尾花的50个样本数据构成。其中的一个种类与另外两个种类是线性可分离的,后两个种类是非线性可分离的。

    该数据集包含了4个属性:
            Sepal.Length(花萼长度),单位是cm;
            Sepal.Width(花萼宽度),单位是cm;
            Petal.Length(花瓣长度),单位是cm;
            Petal.Width(花瓣宽度),单位是cm;
    种类:Iris Setosa(1.山鸢尾)、Iris Versicolour(2.杂色鸢尾),以及Iris Virginica(3.维吉尼亚鸢尾)。

    Python源码:

      1 from __future__ import division
      2 import math
      3 import random
      4 import pandas as pd
      5  
      6  
      7 flowerLables = {0: 'Iris-setosa',
      8                 1: 'Iris-versicolor',
      9                 2: 'Iris-virginica'}
     10  
     11 random.seed(0)
     12  
     13  
     14 # 生成区间[a, b)内的随机数
     15 def rand(a, b):
     16     return (b - a) * random.random() + a
     17  
     18  
     19 # 生成大小 I*J 的矩阵,默认零矩阵
     20 def makeMatrix(I, J, fill=0.0):
     21     m = []
     22     for i in range(I):
     23         m.append([fill] * J)
     24     return m
     25  
     26  
     27 # 函数 sigmoid
     28 def sigmoid(x):
     29     return 1.0 / (1.0 + math.exp(-x))
     30  
     31  
     32 # 函数 sigmoid 的导数
     33 def dsigmoid(x):
     34     return x * (1 - x)
     35  
     36  
     37 class NN:
     38     """ 三层反向传播神经网络 """
     39  
     40     def __init__(self, ni, nh, no):
     41         # 输入层、隐藏层、输出层的节点(数)
     42         self.ni = ni + 1  # 增加一个偏差节点
     43         self.nh = nh + 1
     44         self.no = no
     45  
     46         # 激活神经网络的所有节点(向量)
     47         self.ai = [1.0] * self.ni
     48         self.ah = [1.0] * self.nh
     49         self.ao = [1.0] * self.no
     50  
     51         # 建立权重(矩阵)
     52         self.wi = makeMatrix(self.ni, self.nh)
     53         self.wo = makeMatrix(self.nh, self.no)
     54         # 设为随机值
     55         for i in range(self.ni):
     56             for j in range(self.nh):
     57                 self.wi[i][j] = rand(-0.2, 0.2)
     58         for j in range(self.nh):
     59             for k in range(self.no):
     60                 self.wo[j][k] = rand(-2, 2)
     61  
     62     def update(self, inputs):
     63         if len(inputs) != self.ni - 1:
     64             raise ValueError('与输入层节点数不符!')
     65  
     66         # 激活输入层
     67         for i in range(self.ni - 1):
     68             self.ai[i] = inputs[i]
     69  
     70         # 激活隐藏层
     71         for j in range(self.nh):
     72             sum = 0.0
     73             for i in range(self.ni):
     74                 sum = sum + self.ai[i] * self.wi[i][j]
     75             self.ah[j] = sigmoid(sum)
     76  
     77         # 激活输出层
     78         for k in range(self.no):
     79             sum = 0.0
     80             for j in range(self.nh):
     81                 sum = sum + self.ah[j] * self.wo[j][k]
     82             self.ao[k] = sigmoid(sum)
     83  
     84         return self.ao[:]
     85  
     86     def backPropagate(self, targets, lr):
     87         """ 反向传播 """
     88  
     89         # 计算输出层的误差
     90         output_deltas = [0.0] * self.no
     91         for k in range(self.no):
     92             error = targets[k] - self.ao[k]
     93             output_deltas[k] = dsigmoid(self.ao[k]) * error
     94  
     95         # 计算隐藏层的误差
     96         hidden_deltas = [0.0] * self.nh
     97         for j in range(self.nh):
     98             error = 0.0
     99             for k in range(self.no):
    100                 error = error + output_deltas[k] * self.wo[j][k]
    101             hidden_deltas[j] = dsigmoid(self.ah[j]) * error
    102  
    103         # 更新输出层权重
    104         for j in range(self.nh):
    105             for k in range(self.no):
    106                 change = output_deltas[k] * self.ah[j]
    107                 self.wo[j][k] = self.wo[j][k] + lr * change
    108  
    109         # 更新输入层权重
    110         for i in range(self.ni):
    111             for j in range(self.nh):
    112                 change = hidden_deltas[j] * self.ai[i]
    113                 self.wi[i][j] = self.wi[i][j] + lr * change
    114  
    115         # 计算误差
    116         error = 0.0
    117         error += 0.5 * (targets[k] - self.ao[k]) ** 2
    118         return error
    119  
    120     def test(self, patterns):
    121         count = 0
    122         for p in patterns:
    123             target = flowerLables[(p[1].index(1))]
    124             result = self.update(p[0])
    125             index = result.index(max(result))
    126             print(p[0], ':', target, '->', flowerLables[index])
    127             count += (target == flowerLables[index])
    128         accuracy = float(count / len(patterns))
    129         print('accuracy: %-.9f' % accuracy)
    130  
    131     def weights(self):
    132         print('输入层权重:')
    133         for i in range(self.ni):
    134             print(self.wi[i])
    135         print()
    136         print('输出层权重:')
    137         for j in range(self.nh):
    138             print(self.wo[j])
    139  
    140     def train(self, patterns, iterations=1000, lr=0.1):
    141         # lr: 学习速率(learning rate)
    142         for i in range(iterations):
    143             error = 0.0
    144             for p in patterns:
    145                 inputs = p[0]
    146                 targets = p[1]
    147                 self.update(inputs)
    148                 error = error + self.backPropagate(targets, lr)
    149             if i % 100 == 0:
    150                 print('error: %-.9f' % error)
    151  
    152  
    153  
    154 def iris():
    155     data = []
    156     # 读取数据
    157     raw = pd.read_csv('iris.csv')
    158     raw_data = raw.values
    159     raw_feature = raw_data[0:, 0:4]
    160     for i in range(len(raw_feature)):
    161         ele = []
    162         ele.append(list(raw_feature[i]))
    163         if raw_data[i][4] == 'Iris-setosa':
    164             ele.append([1, 0, 0])
    165         elif raw_data[i][4] == 'Iris-versicolor':
    166             ele.append([0, 1, 0])
    167         else:
    168             ele.append([0, 0, 1])
    169         data.append(ele)
    170     # 随机排列数据
    171     random.shuffle(data)
    172     training = data[0:100]
    173     test = data[101:]
    174     nn = NN(4, 7, 3)
    175     nn.train(training, iterations=10000)
    176     nn.test(test)
    177  
    178  
    179 if __name__ == '__main__':
    180     iris()
  • 相关阅读:
    pycharm破解补丁的使用
    C# 解析JSON格式数据
    LINQ to DataSet的DataTable操作
    日期格式化
    vue scoped原理
    vue父子组件生命周期执行顺序
    js判断同一天和同一周
    flex总结
    react-router v4 参数传递
    link标签rel="alternate"属性的作用及用法
  • 原文地址:https://www.cnblogs.com/duanhx/p/9655217.html
Copyright © 2020-2023  润新知