• [转]Libev源码分析 -- 整体设计


    Libev源码分析 -- 整体设计

    libev是Marc Lehmann用C写的高性能事件循环库。通过libev,可以灵活地把各种事件组织管理起来,如:时钟、io、信号等。libev在业界内也是广受好评,不少项目都采用它来做底层的事件循环。node.js也是其中之一。 学习和分析libev库,有助于理解node.js底层的工作原理,同时也可以学习和借鉴libev的设计思想。本文是最近在学习libev源码的一些心得总结吧。

    libev示例

    先上一个例子,看看libev是怎么使用的吧。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    
    // a single header file is required
    #include <ev.h>
    
    #include <stdio.h> // for puts
    
    // every watcher type has its own typedef'd struct
    // with the name ev_TYPE
    ev_io stdin_watcher;
    ev_timer timeout_watcher;
    
    // all watcher callbacks have a similar signature
    // this callback is called when data is readable on stdin
    static void
    stdin_cb (EV_P_ ev_io *w, int revents)
    {
      puts ("stdin ready");
      // for one-shot events, one must manually stop the watcher
      // with its corresponding stop function.
      ev_io_stop (EV_A_ w);
    
      // this causes all nested ev_run's to stop iterating
      ev_break (EV_A_ EVBREAK_ALL);
    }
    
    // another callback, this time for a time-out
    static void
    timeout_cb (EV_P_ ev_timer *w, int revents)
    {
      puts ("timeout");
      // this causes the innermost ev_run to stop iterating
      ev_break (EV_A_ EVBREAK_ONE);
    }
    
    int
    main (void)
    {
      // use the default event loop unless you have special needs
      struct ev_loop *loop = EV_DEFAULT;
    
      // initialise an io watcher, then start it
      // this one will watch for stdin to become readable
      ev_io_init (&stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
      ev_io_start (loop, &stdin_watcher);
    
      // initialise a timer watcher, then start it
      // simple non-repeating 5.5 second timeout
      ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.);
      ev_timer_start (loop, &timeout_watcher);
    
      // now wait for events to arrive
      ev_run (loop, 0);
    
      // break was called, so exit
      return 0;
    }
    

    这是libev官网文档的例子,其中libev的使用步骤还是比较清晰的。从main开始入手,可以发现代码中主要做了这么几件事情:

    • 获取ev_loop实例。ev_loop,从名字上可以看出,它代表了一个事件循环,也是我们后面代码的主要组织者。

    • 创建和初始化watcher。libev中定义了一系列的watcher,每类watcher负责一类特定的事件。一般可以通过ev_TYPE_init函数来创建一个watcher实例(TYPE是某一种watcher类型,如:io, timer等)。例子中分别创建了io和timer两个watcher,并绑定了相应的回调函数。当感兴趣的事件发生后,对应的回调函数将会被调用。

    • 将watcher注册到ev_loop中。一般可以通过ev_TYPE_start函数来完成。注册成功后,watcher便和loop关联起来了,当loop中检测到感兴趣的事件发生,便会通知相关的watcher。

    • 启动事件循环。 即后面的ev_run函数。事件循环启动后,当前线程/进程将会被阻塞,直到循环被终止。

    在上面的例子中,在两个回调函数中的ev_break函数就是终止循环的地方。当5.5秒超时或是标准输入有输入事件,则会进入到相应的回调函数,然后会终止事件循环,退出程序。

    libev工作原理

    总的来看,libev其实是实现了Reactor模式。当中主要包含了这么几个角色:watcher, ev_loop和ev_run。

    watcher

    watcher是Reactor中的Event Handler。一方面,它向事件循环提供了统一的调用接口(按类型区分);另一方面,它是外部代码的注入口,维护着具体的watcher信息,如:绑定的回调函数,watcher的优先级,是否激活等。

    在ev.h中我们可以看到各种watcher的定义,如:ev_io, ev_timer等。其中,watcher的公共属性定义如下:

    1
    2
    3
    4
    5
    6
    7
    
    /* shared by all watchers */
    #define EV_WATCHER(type)         
     int active; /* private */           
     int pending; /* private */          
     EV_DECL_PRIORITY /* private  int priority; */       
     EV_COMMON /* rw  void *data; */             
     EV_CB_DECLARE (type) /* private */

    其中的宏定义如下:

    1
    2
    3
    
    # define EV_DECL_PRIORITY int priority;
    # define EV_COMMON void *data;
    # define EV_CB_DECLARE(type) void (*cb)(EV_P_ struct type *w, int revents);
    
    • active: 表示当前watcher是否被激活。ev_TYPE_start调用后置位,ev_TYPE_stop调用后复位;

    • pending: 表示当前watcher有事件就绪,等待处理。pending的值其实就是当前watcher在pendings队列中的下标;

    • priority: 是当前watcher的优先级;

    • data: 附加数据指针,用来在watcher中携带额外所需的数据;

    • cb:是事件触发后的回调函数定义。

    具体的watcher再在此基础上添加额外的属性。 开发者可以根据需要,选择特定类型的watcher,创建实例并进行初始化,然后将实例注册到loop中即可。libev中定义了若干种类型的watcher,每类watcher负责解决某一特定领域的问题(如:io, timer, signal等),可以在ev.h中看到这些watcher的定义。

    ev_loop

    ev_loop则是一个Reactor的角色,是事件循环的上下文环境,就像一根竹签,把前面的watcher实例像糖葫芦一样串起来。

    ev_loop的定义

    ev_loop的定义在ev.c中,具体如下:

    1
    2
    3
    4
    5
    6
    7
    8
    
    struct ev_loop
    {
      ev_tstamp ev_rt_now;
      #define ev_rt_now ((loop)->ev_rt_now)
      #define VAR(name,decl) decl;
          #include "ev_vars.h"
      #undef VAR
    };
    

    ev_vars.h中定义了ev_loop的各种属性。在ev_wrap.h中则定义了与loop相关的各种宏,代码中大多都是以宏的形式进行操作。

    watcher的管理

    在ev_loop中,watcher按各自的类型进行分类存储。如:io的loop->anfds,timer的loop->timers。ev_TYPE_start在激活watcher后,便将它加入到相应的存储结构中(具体的实现在后面介绍watcher的文章再分析)。

    在事件循环中,有事件就绪的watcher会被挑拣出来,保存到ev_loop中。这些就绪的watcher主要由loop->pendings和loop->pendingcnt来维护(如下图所示)。这两个东西都是二维数组,第一维都是优先级。pendings中存的是ANPENDING实例,后者的做要作用就是维护就绪的watcher指针; 而pendingcnt中存的则是对应优先级上的pendings元素的数量。在每个就绪的watcher上也会有一个pending字段记录它在pendings列表中的下标,这样就可以通过watcher很方便的找到它在pendings列表中的位置了,这对删除操作很有帮助。

    在一轮事件循环结束后,则会根据优先级,依次触发就绪的watcher。

    pendings结构图

    bool ev_run(loop, flag)

    ev_run函数是执行事件循环的引擎,即Reactor模式中的select方法。通过向ev_run函数传递一个ev_loop实例,便可以开启一个事件循环。ev_run实际上是一个巨大的do-while循环,期间会检查loop中注册的各种watcher的事件。如果有事件就绪,则触发相应的watcher。这个循环会一直持续到ev_break被调用或者无active的watcher为止。当然,也可以通过传递EVRUN_NOWAIT或EVRUN_ONCE等flag来控制循环的阻塞行为。

    ev_run的工作内容,在官方文档的API中有详细说明,通过文档有助于对ev_run的理解。具体的代码有点长,在这里就不贴了,感兴趣的同学可以在ev.c中查看ev_run的实现代码。剔除掉条件检查和一些无关紧要的代码,主要的流程如下图所示。

    ev_run流程图

    可以看到,ev_run的主要工作就是按watcher的分类,先后检查各种类型的watcher上的事件,通过ev_feed_event函数将就绪的watcher加入到pending的数据结构中。最后调用ev_invoke_pending,触发pending中的watcher。完了以后会检查,是否还有active的watcher以及是否有ev_break调用过,然后决定是否要继续下一轮循环。

    总结

    总的来看,libev的结构设计还是非常清晰。如果说,主循环ev_run是libev这棵大树的主干,那么功能强大,数量繁多的watcher就是这棵大树的树叶,而循环上下文ev_loop则是连接主干和树叶的树枝,它们的分工与职责是相当明确的。作为大树的主干,ev_run的代码是非常稳定和干净的,基本上不会掺杂外部开发者的逻辑代码进来。作为叶子的watcher,它的定位也非常明确:专注于自己的领域,只解决某一个类型的问题。不同的watcher以及watcher和主循环之间并没有太多的干扰和耦合,这也是libev能如此灵活扩展的原因。而中间的树枝ev_loop的作用也是不言而喻的,正是因为它在中间的调和,前面两位哥们才能活得这么有个性。

    看到这里,libev的主体架构已经比较清楚了,但是似乎还没看到与性能相关的关键代码。与主干代码不一样,这些代码更多的是隐藏在实现具体逻辑的地方,也就是watcher之中的。虽然watcher的使用接口都比较相似,但是不同的watcher,底层的数据结构和处理策略还是不一样的。下面一篇文章我们就来探索一下libev中比较常用的几种watcher的设计与实现。

    文章出处:http://codingcat.net/blog/2012/10/09/libev-framework/

  • 相关阅读:
    spoj227 树状数组插队序列问题
    hdu2838树状数组解逆序
    hdu2642二维树状数组单点更新
    hdu1556 树状数组区间更新单点查询板子
    hdu3015树状数组 poj1990的离散化版本
    poj1990两个树状数组
    Python中面向对象和类
    Python中面向对象和类
    Python中的字典dict
    Python中的字典dict
  • 原文地址:https://www.cnblogs.com/dszhazha/p/4080497.html
Copyright © 2020-2023  润新知