You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols +
and -
. For each integer, you should choose one from +
and -
as its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example 1:
Input: nums is [1, 1, 1, 1, 1], S is 3. Output: 5 Explanation: -1+1+1+1+1 = 3 +1-1+1+1+1 = 3 +1+1-1+1+1 = 3 +1+1+1-1+1 = 3 +1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
- The length of the given array is positive and will not exceed 20.
- The sum of elements in the given array will not exceed 1000.
- Your output answer is guaranteed to be fitted in a 32-bit integer.
【问题分析】
1、该问题求解数组中数字只和等于目标值的方案个数,每个数字的符号可以为正或负(减整数等于加负数)。
2、该问题和矩阵链乘很相似,是典型的动态规划问题
3、举例说明: nums = {1,2,3,4,5}, target=3, 一种可行的方案是+1-2+3-4+5 = 3
该方案中数组元素可以分为两组,一组是数字符号为正(P={1,3,5}),另一组数字符号为负(N={2,4})
因此: sum(1,3,5) - sum(2,4) = target
sum(1,3,5) - sum(2,4) + sum(1,3,5) + sum(2,4) = target + sum(1,3,5) + sum(2,4)
2sum(1,3,5) = target + sum(1,3,5) + sum(2,4)
2sum(P) = target + sum(nums)
sum(P) = (target + sum(nums)) / 2
由于target和sum(nums)是固定值,因此原始问题转化为求解nums中子集的和等于sum(P)的方案个数问题
4、求解nums中子集合只和为sum(P)的方案个数(nums中所有元素都是非负)
该问题可以通过动态规划算法求解
举例说明:给定集合nums={1,2,3,4,5}, 求解子集,使子集中元素之和等于9 = new_target = sum(P) = (target+sum(nums))/2
定义dp[10]数组, dp[10] = {1,0,0,0,0,0,0,0,0,0}
dp[i]表示子集合元素之和等于当前目标值的方案个数, 当前目标值等于9减去当前元素值
当前元素等于1时,dp[9] = dp[9] + dp[9-1]
dp[8] = dp[8] + dp[8-1]
...
dp[1] = dp[1] + dp[1-1]
当前元素等于2时,dp[9] = dp[9] + dp[9-2]
dp[8] = dp[8] + dp[8-2]
...
dp[2] = dp[2] + dp[2-2]
当前元素等于3时,dp[9] = dp[9] + dp[9-3]
dp[8] = dp[8] + dp[8-3]
...
dp[3] = dp[3] + dp[3-3]
当前元素等于4时,
...
当前元素等于5时,
...
dp[5] = dp[5] + dp[5-5]
最后返回dp[9]即是所求的解
#include <iostream> #include <cstdio> #include <cmath> #include <cstdlib> #include <cstring> #include <vector> #include <algorithm> using namespace std; class Solution { public: int subsetSum(vector<int>& nums,int s) { int dp[s+1]; //dp[]为所求和的前面所有可能产生的和 memset(dp,0,sizeof(dp)); dp[0]=1; for(int i=0;i<nums.size();++i) { int n=nums[i]; for(int j=s;j>=n;--j) { dp[j]=dp[j]+dp[j-n]; //能产生和为的有dp[j]和dp[j-n]+n } } return dp[s]; } /* 设x为所有正数的和,y为所有负数的和(要减去的正数的和) 则有方程 x-y=s (1) x+y=sum (2) 由(1),(2)式可得x=(s+sum)/2 */ int findTargetSumWays(vector<int>& nums, int s) { int sum=0; for(int i=0;i<nums.size();i++) { sum+=nums[i]; } if((s+sum)%2!=0||sum<s) return 0; else { return subsetSum(nums,(s+sum)/2); } } }; int main() { Solution S; int n; int num; int s; vector<int> nums; while(~scanf("%d",&n)) { scanf("%d",&s); nums.clear(); for(int i=0;i<n;++i) { scanf("%d",&num); nums.push_back(num); //printf("%d",nums[i]); } printf("%d ",S.findTargetSumWays(nums,s)); } return 0; }