(1)一个英国某大学的数学教授发现自己家的下水道堵了,就请来一个水管工来修。30分钟后,水管疏通了。教授相当满意水管工的表现,但当他看到账单后不禁大叫:“what!就30分钟你收的钱够我一个月收入的1/3了!我去当水管工好了!”。水管工说,“你可以去啊。我们公司正招人呢,还包培训。不过你得说你只是小学毕业。公司不喜欢学历太高的人”。于是教授就去参加培训,当了水管工。他的收入一下翻了三倍。他比以前高兴多了。几年后,公司突然决定把水管工们的文化水平提高到初中毕业,便要求旗下的工人们都去上夜校。夜校的第一堂课是数学。老师想先看一下这些水管工的基础有多好,于是他随便抽了一个人上来写圆面积的公式。这个教授被抽中了,不过干了这么多年水管工,他已经忘了圆面积的公式是PI * R^2。于是他只好从头推导:把圆无限分割后积分。但他得出的结果是负的PI * R^2。尴尬ing,教授从来又来,结果还是负的。他非常尴尬,于是回过头向教室里坐着的几十个水管工同事求助。只见这些同事正在交头接耳,纷纷给他说:把积分上下限交换一下。
(2)
常函数和指数函数e的x次方走在街上,远远看到微分算子,常函数吓得慌忙躲藏,说:“被它微分一下,我就什么都没有啦!”指数函数不慌不忙道:“它可不能把我怎么样,我是e的x次方!”指数函数与微分算子相遇。指数函数自我介绍道:“你好,我是e的x次方。”微分算子道:“你好,我是d/dy!
我的理解:指数函数表达式为y=e^x,为严格单调函数,其反函数为x=lny,d/dy是对y进行求导。此处附我对导数和微分的理解:
1。导数是函数在某一点的变化率,其几何意义就是函数在某点切线的斜率
2。微分代表增量,是在自变量微量增加时,函数增加的度量。其几何意义是函数在x增加微量时,沿着切线方向增加的量度,用到了以直代曲的思想。
明天修改。。