A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set. Now given a graph with several vertex sets, you are supposed to tell if each of them is a vertex cover or not.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N and M (both no more than 1), being the total numbers of vertices and the edges, respectively. Then M lines follow, each describes an edge by giving the indices (from 0 to N−1) of the two ends of the edge.
After the graph, a positive integer K (≤ 100) is given, which is the number of queries. Then K lines of queries follow, each in the format:
Nv [ [
where Nv is the number of vertices in the set, and ['s are the indices of the vertices.
Output Specification:
For each query, print in a line Yes
if the set is a vertex cover, or No
if not.
Sample Input:
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 0
2 4
5
4 0 3 8 4
6 6 1 7 5 4 9
3 1 8 4
2 2 8
7 9 8 7 6 5 4 2
Sample Output:
No Yes Yes No No
题意:
图中的每条边的两个顶点a和b,判断a和b中是否至少一个在集合中,如果在,称之为顶点覆盖
题解:
用一个vector<int> 数组存放集合中的点,点的值为下标,所对应的数组值为1;将图中的点用结构体数组存储,遍历数组,判断时候每条边都满足顶点覆盖。
AC代码:
#include<bits/stdc++.h> using namespace std; const int maxn=10111; vector<int> v; struct node{ int a,b; }node[maxn]; int main(){ int n,m,k,cnt,t; cin>>n>>m; for(int i=0;i<m;i++){ cin>>node[i].a>>node[i].b; } cin>>k; for(int i=0;i<k;i++){ cin>>t; int flag=1; vector<int> v; v.resize(n); for(int j=0;j<t;j++){ cin>>cnt; v[cnt]=1; } for(int i=0;i<m;i++){ int a1=node[i].a; int b1=node[i].b; if(v[a1]==0&&v[b1]==0){ printf("No "); flag=0; break; } } if(flag==1){ printf("Yes "); } } return 0; }