• 1087 All Roads Lead to Rome (30 分)


    Indeed there are many different tourist routes from our city to Rome. You are supposed to find your clients the route with the least cost while gaining the most happiness.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of cities, and K, the total number of routes between pairs of cities; followed by the name of the starting city. The next N1 lines each gives the name of a city and an integer that represents the happiness one can gain from that city, except the starting city. Then K lines follow, each describes a route between two cities in the format City1 City2 Cost. Here the name of a city is a string of 3 capital English letters, and the destination is always ROM which represents Rome.

    Output Specification:

    For each test case, we are supposed to find the route with the least cost. If such a route is not unique, the one with the maximum happiness will be recommanded. If such a route is still not unique, then we output the one with the maximum average happiness -- it is guaranteed by the judge that such a solution exists and is unique.

    Hence in the first line of output, you must print 4 numbers: the number of different routes with the least cost, the cost, the happiness, and the average happiness (take the integer part only) of the recommanded route. Then in the next line, you are supposed to print the route in the format City1->City2->...->ROM.

    Sample Input:

    6 7 HZH
    ROM 100
    PKN 40
    GDN 55
    PRS 95
    BLN 80
    ROM GDN 1
    BLN ROM 1
    HZH PKN 1
    PRS ROM 2
    BLN HZH 2
    PKN GDN 1
    HZH PRS 1
     

    Sample Output:

    3 3 195 97
    HZH->PRS->ROM

    dijkstra+dfs

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn=1111;
    #define eps 1e-8
    #define  inf  0x3fffffff
    int G[maxn][maxn];
    bool vis[maxn];
    int dist[maxn];
    int weight[maxn];
    vector<int> pre[maxn];
    vector<int> tempath;
    vector<int> path;
    int n,m;
    int st;
    int numpath=0,maxw=-1;
    double maxavg=0;
    string start;
    map<string,int> stoInt;
    map<int,string> itoSt;
    void dijkstra(int index){
        dist[index]=0;
        for(int i=0;i<n;i++){
            int mind=inf,minv=-1;
            for(int i=0;i<n;i++){
                if(vis[i]==false&&dist[i]<mind){
                    mind=dist[i];
                    minv=i;
                }
            }
            int u=minv;
            if(u==-1){
                return ;
            }
            vis[u]=true;
            for(int v=0;v<n;v++){
                if(vis[v]==false&&G[u][v]!=inf&&dist[u]+G[u][v]<dist[v]){
                    dist[v]=dist[u]+G[u][v];
                    pre[v].clear();
                    pre[v].push_back(u);
                }
                else if(dist[u]+G[u][v]==dist[v]){
                    pre[v].push_back(u);
                }
            }
        }
    }
    void dfs(int v){
        if(v==st){
            tempath.push_back(v);
            numpath++;
            int numw=0;
            for(int i=tempath.size()-2;i>=0;i--){
                numw+=weight[tempath[i]];
            }
            double numavg=1.0*numw/(tempath.size()-1);
            if(numw>maxw){
                maxw=numw;
                maxavg=numavg;
                path=tempath;
            }
            else if(numw==maxw&&numavg>maxavg){
                maxavg=numavg;
                path=tempath;
            }
            
            tempath.pop_back();
            return ;
        }
        tempath.push_back(v);
        for(int i=0;i<pre[v].size();i++){
            dfs(pre[v][i]);
        }
        tempath.pop_back();
    }
    int main(){
        fill(G[0],G[0]+maxn*maxn,inf);
        fill(vis,vis+maxn,false);
        fill(dist,dist+maxn,inf);
        cin>>n>>m>>start;
        stoInt[start]=0;
        itoSt[0]=start;
        string name;
        int value;
        for(int i=1;i<n;i++){
            cin>>name>>value;
            stoInt[name]=i;
            itoSt[i]=name;
            weight[i]=value;
        }
        string city1,city2;
        for(int i=0;i<m;i++){
            cin>>city1>>city2>>value;
            int c1=stoInt[city1];
            int c2=stoInt[city2];
            G[c1][c2]=value;
            G[c2][c1]=value;
        }
        dijkstra(0);
        int na=stoInt["ROM"];
        st=stoInt[start];
        dfs(na);
        printf("%d %d %d %.f
    ",numpath,dist[na],maxw,maxavg);
        for(int i=path.size()-1;i>=0;i--){
            if(i>0){
                printf("%s->",itoSt[path[i]].c_str());
            }
            else{
                printf("%s
    ",itoSt[path[i]].c_str());
            }
        }
        return 0;
    }


  • 相关阅读:
    代码中回调的用法
    关于导入外部样式表的目录问题
    js操作元素样式
    JavaSE学习总结第10天_面向对象5
    JavaSE学习总结第09天_面向对象4
    JavaSE学习总结第08天_面向对象3
    JavaSE学习总结第07天_面向对象2
    JavaSE学习总结第06天_Java语言基础2 & 面向对象1
    JavaSE学习总结第05天_Java语言基础1
    JavaSE学习总结第03天_Java基础语法2
  • 原文地址:https://www.cnblogs.com/dreamzj/p/14448058.html
Copyright © 2020-2023  润新知