针对形如:
字段1 字段2 字段3 字段n
1 hello 26 789
1 world 89 556
2 what 55 456
2 the 85 45
2 fuck 55 99
5 haha 98 455
以上类型的查询数据结果,需要对 字段3 进行求和分组(在SQL查询无法一次性完成的情况下,通常采用Java分组排序),大概思路如下:
1、在Bean中添加相关的分组标记字段,对求和或者其它统计的结果进行插入分组标记,下面demo中为bigIdOrder标记
2、对完成标记的List进行标记的补全
3、对补全的List按照标记进行排序
PS:非常不赞成在前端用JS/JQ等进行排序,非常费劲,并且数组还会发生不可知的变化,笔者吃过亏(算法高手除外),笔者编码水平有限,写的不到位的地方恳请大神们批评指正。
因编码直接来源于项目,变量名未做统一demo化,现给出提示:
bigId:字段1
pinci:字段3
bigIdOrder:标记字段(可自定义)
JSONObject json = new JSONObject();
String dataType = request.getParameter("dataType");
String channelId = request.getParameter("channelId");
String order = request.getParameter("type");
setMapTimeRight(dataType, 0);
map.put("channelId", channelId);
map.put("order", order);
try {
List<UnconventionBrandAnalyseByBrand> now = this.service
.unconventionBrandSituation(map);
//1、产生组装排序条件字段数据标记
int bigIdOrder=0;
int i=-1;
int i2=0;
List bigIdOrderArray = new ArrayList();
for(UnconventionBrandAnalyseByBrand un : now){
i++;
//如果当前bigId与前一个bigId相等,则将该id视为一个id(bigIdOrder),对该id所对应的所有频次数进行累加
if(i==0
&&now.get(0).getBigId().equals(now.get(1).getBigId())){
//第一次计数后有(非分组条件)
bigIdOrder = bigIdOrder+Integer.parseInt(now.get(i).getPinci());
}else if(i>0
&&i<now.size()-1
&&!now.get(i).getBigId().equals(now.get(i-1).getBigId())
&&now.get(i).getBigId().equals(now.get(i+1).getBigId())){
//前不同后相同(非分组条件)
bigIdOrder = bigIdOrder+Integer.parseInt(now.get(i).getPinci());
}else if(i>0
&&i<now.size()-1
&&now.get(i).getBigId().equals(now.get(i+1).getBigId())
&&now.get(i).getBigId().equals(now.get(i+1).getBigId())){
//前相同后相同(非分组条件)
bigIdOrder = bigIdOrder+Integer.parseInt(now.get(i).getPinci());
}else{
//分组条件
bigIdOrder = bigIdOrder+Integer.parseInt(now.get(i).getPinci());
un.setBigIdOrder(bigIdOrder+"");//添加分组标识(int类型bigIdOrder)
bigIdOrderArray.add(i2, bigIdOrder+"");
i2++;
bigIdOrder = 0;
}
}
// 2、补全产生组装排序条件字段数据标记
int ii = 0;
int ng = 0;// 非分组条件计数器
for (UnconventionBrandAnalyseByBrand un : now) {
// 如果当前bigId与前一个bigId相等,则将该id视为一个id(bigIdOrder),对该id所对应的所有频次数进行累加
if (ii == 0
&& !now.get(0).getBigId().equals(now.get(1).getBigId())) {
// 第一次计数后无(分组条件)
} else if (ii > 0
&& i < now.size() - 1
&& now.get(ii).getBigId().equals(
now.get(ii - 1).getBigId())
&& !now.get(ii).getBigId().equals(
now.get(ii + 1).getBigId())) {
// 前同后不同(分组条件)
} else if (ii == now.size() - 1
&& now.get(ii).getBigId().equals(
now.get(ii - 1).getBigId())) {
// 后无前同(分组条件)
} else if (ii == now.size() - 1
&& !now.get(ii).getBigId().equals(
now.get(ii - 1).getBigId())) {
// 后无前不同(分组条件)
} else {
// 非分组条件
if (ii == 0) {
un.setBigIdOrder(bigIdOrderArray.get(0).toString());
} else if (!now.get(ii).getBigId().equals(
now.get(ii - 1).getBigId())) {
ng++;
un.setBigIdOrder(bigIdOrderArray.get(ng).toString());
} else {
un.setBigIdOrder(bigIdOrderArray.get(ng).toString());
}
}
ii++;
}
// 3、开始排序采用对象比较器
Comparator<UnconventionBrandAnalyseByBrand> comparator = new Comparator<UnconventionBrandAnalyseByBrand>() {
public int compare(UnconventionBrandAnalyseByBrand s1,
UnconventionBrandAnalyseByBrand s2) {
// 排序标记
int ret = 0;
if (s1.getBigIdOrder() != s2.getBigIdOrder()) {
ret = Integer.parseInt(s1.getBigIdOrder())
- Integer.parseInt(s2.getBigIdOrder());
}
return ret > 0 ? -1 : 1;// 升序或者降序改变-1和1的位置即可
}
};
//开始自动排序
Collections.sort(now,comparator);
json.put("data", now);
try {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
out.print(json);
out.close();
} catch (Exception e) {
e.printStackTrace();
}
} catch (Exception e) {
e.printStackTrace();
}
return null;