Pancake Sorting 煎饼排序
Given an array of integers arr
, sort the array by performing a series of pancake flips.
In one pancake flip we do the following steps:
- Choose an integer
k
where1 <= k <= arr.length
. - Reverse the sub-array
arr[0...k-1]
(0-indexed).
For example, if arr = [3,2,1,4]
and we performed a pancake flip choosing k = 3
, we reverse the sub-array [3,2,1]
, so arr = [1,2,3,4]
after the pancake flip at k = 3
.
Return an array of the k
-values corresponding to a sequence of pancake flips that sort arr
. Any valid answer that sorts the array within 10 * arr.length
flips will be judged as correct.
给定一数组,每次允许将前k个元素反转,按照这个策略,要通过几次k反转,使得最终的数组是有序的[从小到大]
输入:[3,2,4,1]
输出:[4,2,4,3]
解释:
我们执行 4 次煎饼翻转,k 值分别为 4,2,4,和 3。
初始状态 arr = [3, 2, 4, 1]
第一次翻转后(k = 4):arr = [1, 4, 2, 3]
第二次翻转后(k = 2):arr = [4, 1, 2, 3]
第三次翻转后(k = 4):arr = [3, 2, 1, 4]
第四次翻转后(k = 3):arr = [1, 2, 3, 4],此时已完成排序。
思路
先将最大的数放到正确的位置即n,如果要达到目标,那么就首先要将其放到第一位,然后通过一次整组反转来实现,然后就是准备排剩下的n-1个。
public void reverse(int[] arr ,int n ,int[] ind){
for (int i = 0,j=n-1; i <j ; i++,j--) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
ind[arr[i]]=i;
ind[arr[j]]=j;
}
return;
}
public List<Integer> pancakeSort(int[] arr) {
int[] ind = new int[arr.length+1];
ArrayList<Integer> ret=new ArrayList<>();
for (int i = 0; i < arr.length; i++) {
ind[arr[i]]=i;
}
for (int i = arr.length; i >=1; i--) {
if(ind[i] ==i-1){
//判断是否处于正确的位置
continue;
}
if (ind[i]+1!=1){
//本轮最大的待排数,还不处于第一位,需要反转前 ind[i]+1个
ret.add(ind[i]+1);
reverse(arr,ind[i]+1,ind);
}
if(i!=1){
ret.add(i);
reverse(arr,i,ind);
}
}
return ret;
}