Given an unsorted array, find the maximum difference between the successive elements in its sorted form.
Try to solve it in linear time/space.
Return 0 if the array contains less than 2 elements.
You may assume all elements in the array are non-negative integers and fit in the 32-bit signed integer range.
题意理解:successive连续的
输入:未排序数组,数组元素均为非负整数,在32位整数范围内
输出:输出排序后连续元素的最大差值
要求:线性时间/空间
法一:直观做法就是排序,之后一次比较,但时间空间效率不高!!!
1 class Solution 2 { 3 public: 4 int maximumGap(vector<int> &nums) 5 {//题意理解:successive连续的 6 //输入:未排序数组,数组元素均为非负整数,在32位整数范围内 7 //输出:输出排序后连续元素的最大差值 8 //要求:线性时间/空间 9 //直观做法就是排序,之后一次比较,但时间空间效率不高!!! 10 int count = nums.size(); 11 if(count <2) 12 return 0; 13 sort(nums.begin(),nums.end()); 14 int maxGap = nums[1] - nums[0]; 15 16 for(int i=2; i<count; i++) 17 { 18 if(maxGap < nums[i]-nums[i-1]) 19 maxGap = nums[i]-nums[i-1]; 20 } 21 return maxGap; 22 } 23 };
法二:
官方提示: 表示没有理解!!!
Suppose there are N elements and they range from A to B.
Then the maximum gap will be no smaller than ceiling[(B - A) / (N - 1)]
Let the length of a bucket to be len = ceiling[(B - A) / (N - 1)], then we will have at most num = (B - A) / len + 1 of bucket
for any number K in the array, we can easily find out which bucket it belongs by calculating loc = (K - A) / len and therefore maintain the maximum and minimum elements in each bucket.
Since the maximum difference between elements in the same buckets will be at most len - 1, so the final answer will not be taken from two elements in the same buckets.
For each non-empty buckets p, find the next non-empty buckets q, then q.min - p.max could be the potential answer to the question. Return the maximum of all those values.
参考:http://www.cnblogs.com/ganganloveu/p/4162290.html