• Java生成动态GIF图片


    写selenium自动化时,为了查看运行效果,后给浏览器截图,想到可以生成gif图片来快速预览。看到已经有人实现了,直接拿过来。

    共涉及到三个java文件,分别是NeuQuant.java,LZWEncoder.javaAnimatedGifEncoder.java,有了这三个文件,我们可以自己编写方法调用,代码如下:

      BufferedImage src1 = ImageIO.read(new File("Img221785570.jpg"));
      BufferedImage src2 = ImageIO.read(new File("W.gif"));
      //BufferedImage src3 = ImageIO.read(new File("c:/ship3.jpg")); 
      AnimatedGifEncoder e = new AnimatedGifEncoder(); 
      e.setRepeat(0); 
      e.start("laoma.gif"); 
      e.setDelay(300); // 1 frame per sec 
      e.addFrame(src1); 
      e.setDelay(100); 
      e.addFrame(src2); 
      e.setDelay(100); 
      //  e.addFrame(src2); 
      e.finish(); 

    三个java文件源码如下:

    NeuQuant.java

    public class NeuQuant
        {
            protected static final int netsize = 256; /* number of colours used */
            /* four primes near 500 - assume no image has a length so large */
            /* that it is divisible by all four primes */
            protected static final int prime1 = 499;
            protected static final int prime2 = 491;
            protected static final int prime3 = 487;
            protected static final int prime4 = 503;
            protected static final int minpicturebytes = (3 * prime4);
            /* minimum size for input image */
            /* Program Skeleton
            ----------------
            [select samplefac in range 1..30]
            [read image from input file]
            pic = (unsigned char*) malloc(3*width*height);
            initnet(pic,3*width*height,samplefac);
            learn();
            unbiasnet();
            [write output image header, using writecolourmap(f)]
            inxbuild();
            write output image using inxsearch(b,g,r)      */
            /* Network Definitions
            ------------------- */
            protected static final int maxnetpos = (netsize - 1);
            protected static final int netbiasshift = 4; /* bias for colour values */
            protected static final int ncycles = 100; /* no. of learning cycles */
            /* defs for freq and bias */
            protected static final int intbiasshift = 16; /* bias for fractions */
            protected static final int intbias = (((int) 1) << intbiasshift);
            protected static final int gammashift = 10; /* gamma = 1024 */
            protected static final int gamma = (((int) 1) << gammashift);
            protected static final int betashift = 10;
            protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */
            protected static final int betagamma =
                    (intbias << (gammashift - betashift));
            /* defs for decreasing radius factor */
            protected static final int initrad = (netsize >> 3); /* for 256 cols, radius starts */
            protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
            protected static final int radiusbias = (((int) 1) << radiusbiasshift);
            protected static final int initradius = (initrad * radiusbias); /* and decreases by a */
            protected static final int radiusdec = 30; /* factor of 1/30 each cycle */
            /* defs for decreasing alpha factor */
            protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */
            protected static final int initalpha = (((int) 1) << alphabiasshift);
            protected int alphadec; /* biased by 10 bits */
            /* radbias and alpharadbias used for radpower calculation */
            protected static final int radbiasshift = 8;
            protected static final int radbias = (((int) 1) << radbiasshift);
            protected static final int alpharadbshift = (alphabiasshift + radbiasshift);
            protected static final int alpharadbias = (((int) 1) << alpharadbshift);
            /* Types and Global Variables
            -------------------------- */
            protected byte[] thepicture; /* the input image itself */
            protected int lengthcount; /* lengthcount = H*W*3 */
            protected int samplefac; /* sampling factor 1..30 */
            //   typedef int pixel[4];                /* BGRc */
            protected int[][] network; /* the network itself - [netsize][4] */
            protected int[] netindex = new int[256];
            /* for network lookup - really 256 */
            protected int[] bias = new int[netsize];
            /* bias and freq arrays for learning */
            protected int[] freq = new int[netsize];
            protected int[] radpower = new int[initrad];
            /* radpower for precomputation */
            /* Initialise network in range (0,0,0) to (255,255,255) and set parameters
            ----------------------------------------------------------------------- */
            public NeuQuant(byte[] thepic, int len, int sample) {
                int i;
                int[] p;
                thepicture = thepic;
                lengthcount = len;
                samplefac = sample;
                network = new int[netsize][];
                for (i = 0; i < netsize; i++) {
                    network[i] = new int[4];
                    p = network[i];
                    p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
                    freq[i] = intbias / netsize; /* 1/netsize */
                    bias[i] = 0;
                }
            }
            public byte[] colorMap() {
                byte[] map = new byte[3 * netsize];
                int[] index = new int[netsize];
                for (int i = 0; i < netsize; i++)
                    index[network[i][3]] = i;
                int k = 0;
                for (int i = 0; i < netsize; i++) {
                    int j = index[i];
                    map[k++] = (byte) (network[j][0]);
                    map[k++] = (byte) (network[j][1]);
                    map[k++] = (byte) (network[j][2]);
                }
                return map;
            }
            /* Insertion sort of network and building of netindex[0..255] (to do after unbias)
               ------------------------------------------------------------------------------- */
            public void inxbuild() {
                int i, j, smallpos, smallval;
                int[] p;
                int[] q;
                int previouscol, startpos;
                previouscol = 0;
                startpos = 0;
                for (i = 0; i < netsize; i++) {
                    p = network[i];
                    smallpos = i;
                    smallval = p[1]; /* index on g */
           /* find smallest in i..netsize-1 */
                    for (j = i + 1; j < netsize; j++) {
                        q = network[j];
                        if (q[1] < smallval) { /* index on g */
                            smallpos = j;
                            smallval = q[1]; /* index on g */
                        }
                    }
                    q = network[smallpos];
           /* swap p (i) and q (smallpos) entries */
                    if (i != smallpos) {
                        j = q[0];
                        q[0] = p[0];
                        p[0] = j;
                        j = q[1];
                        q[1] = p[1];
                        p[1] = j;
                        j = q[2];
                        q[2] = p[2];
                        p[2] = j;
                        j = q[3];
                        q[3] = p[3];
                        p[3] = j;
                    }
           /* smallval entry is now in position i */
                    if (smallval != previouscol) {
                        netindex[previouscol] = (startpos + i) >> 1;
                        for (j = previouscol + 1; j < smallval; j++)
                            netindex[j] = i;
                        previouscol = smallval;
                        startpos = i;
                    }
                }
                netindex[previouscol] = (startpos + maxnetpos) >> 1;
                for (j = previouscol + 1; j < 256; j++)
                    netindex[j] = maxnetpos; /* really 256 */
            }
            /* Main Learning Loop
               ------------------ */
            public void learn() {
                int i, j, b, g, r;
                int radius, rad, alpha, step, delta, samplepixels;
                byte[] p;
                int pix, lim;
                if (lengthcount < minpicturebytes)
                    samplefac = 1;
                alphadec = 30 + ((samplefac - 1) / 3);
                p = thepicture;
                pix = 0;
                lim = lengthcount;
                samplepixels = lengthcount / (3 * samplefac);
                delta = samplepixels / ncycles;
                alpha = initalpha;
                radius = initradius;
                rad = radius >> radiusbiasshift;
                if (rad <= 1)
                    rad = 0;
                for (i = 0; i < rad; i++)
                    radpower[i] =
                            alpha * (((rad * rad - i * i) * radbias) / (rad * rad));
                //fprintf(stderr,"beginning 1D learning: initial radius=%d/n", rad);
                if (lengthcount < minpicturebytes)
                    step = 3;
                else if ((lengthcount % prime1) != 0)
                    step = 3 * prime1;
                else {
                    if ((lengthcount % prime2) != 0)
                        step = 3 * prime2;
                    else {
                        if ((lengthcount % prime3) != 0)
                            step = 3 * prime3;
                        else
                            step = 3 * prime4;
                    }
                }
                i = 0;
                while (i < samplepixels) {
                    b = (p[pix + 0] & 0xff) << netbiasshift;
                    g = (p[pix + 1] & 0xff) << netbiasshift;
                    r = (p[pix + 2] & 0xff) << netbiasshift;
                    j = contest(b, g, r);
                    altersingle(alpha, j, b, g, r);
                    if (rad != 0)
                        alterneigh(rad, j, b, g, r); /* alter neighbours */
                    pix += step;
                    if (pix >= lim)
                        pix -= lengthcount;
                    i++;
                    if (delta == 0)
                        delta = 1;
                    if (i % delta == 0) {
                        alpha -= alpha / alphadec;
                        radius -= radius / radiusdec;
                        rad = radius >> radiusbiasshift;
                        if (rad <= 1)
                            rad = 0;
                        for (j = 0; j < rad; j++)
                            radpower[j] =
                                    alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
                    }
                }
                //fprintf(stderr,"finished 1D learning: final alpha=%f !/n",((float)alpha)/initalpha);
            }
            /* Search for BGR values 0..255 (after net is unbiased) and return colour index
               ---------------------------------------------------------------------------- */
            public int map(int b, int g, int r) {
                int i, j, dist, a, bestd;
                int[] p;
                int best;
                bestd = 1000; /* biggest possible dist is 256*3 */
                best = -1;
                i = netindex[g]; /* index on g */
                j = i - 1; /* start at netindex[g] and work outwards */
                while ((i < netsize) || (j >= 0)) {
                    if (i < netsize) {
                        p = network[i];
                        dist = p[1] - g; /* inx key */
                        if (dist >= bestd)
                            i = netsize; /* stop iter */
                        else {
                            i++;
                            if (dist < 0)
                                dist = -dist;
                            a = p[0] - b;
                            if (a < 0)
                                a = -a;
                            dist += a;
                            if (dist < bestd) {
                                a = p[2] - r;
                                if (a < 0)
                                    a = -a;
                                dist += a;
                                if (dist < bestd) {
                                    bestd = dist;
                                    best = p[3];
                                }
                            }
                        }
                    }
                    if (j >= 0) {
                        p = network[j];
                        dist = g - p[1]; /* inx key - reverse dif */
                        if (dist >= bestd)
                            j = -1; /* stop iter */
                        else {
                            j--;
                            if (dist < 0)
                                dist = -dist;
                            a = p[0] - b;
                            if (a < 0)
                                a = -a;
                            dist += a;
                            if (dist < bestd) {
                                a = p[2] - r;
                                if (a < 0)
                                    a = -a;
                                dist += a;
                                if (dist < bestd) {
                                    bestd = dist;
                                    best = p[3];
                                }
                            }
                        }
                    }
                }
                return (best);
            }
            public byte[] process() {
                learn();
                unbiasnet();
                inxbuild();
                return colorMap();
            }
            /* Unbias network to give byte values 0..255 and record position i to prepare for sort
               ----------------------------------------------------------------------------------- */
            public void unbiasnet() {
                int i, j;
                for (i = 0; i < netsize; i++) {
                    network[i][0] >>= netbiasshift;
                    network[i][1] >>= netbiasshift;
                    network[i][2] >>= netbiasshift;
                    network[i][3] = i; /* record colour no */
                }
            }
            /* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
               --------------------------------------------------------------------------------- */
            protected void alterneigh(int rad, int i, int b, int g, int r) {
                int j, k, lo, hi, a, m;
                int[] p;
                lo = i - rad;
                if (lo < -1)
                    lo = -1;
                hi = i + rad;
                if (hi > netsize)
                    hi = netsize;
                j = i + 1;
                k = i - 1;
                m = 1;
                while ((j < hi) || (k > lo)) {
                    a = radpower[m++];
                    if (j < hi) {
                        p = network[j++];
                        try {
                            p[0] -= (a * (p[0] - b)) / alpharadbias;
                            p[1] -= (a * (p[1] - g)) / alpharadbias;
                            p[2] -= (a * (p[2] - r)) / alpharadbias;
                        } catch (Exception e) {
                        } // prevents 1.3 miscompilation
                    }
                    if (k > lo) {
                        p = network[k--];
                        try {
                            p[0] -= (a * (p[0] - b)) / alpharadbias;
                            p[1] -= (a * (p[1] - g)) / alpharadbias;
                            p[2] -= (a * (p[2] - r)) / alpharadbias;
                        } catch (Exception e) {
                        }
                    }
                }
            }
            /* Move neuron i towards biased (b,g,r) by factor alpha
               ---------------------------------------------------- */
            protected void altersingle(int alpha, int i, int b, int g, int r) {
          /* alter hit neuron */
                int[] n = network[i];
                n[0] -= (alpha * (n[0] - b)) / initalpha;
                n[1] -= (alpha * (n[1] - g)) / initalpha;
                n[2] -= (alpha * (n[2] - r)) / initalpha;
            }
            /* Search for biased BGR values
               ---------------------------- */
            protected int contest(int b, int g, int r) {
          /* finds closest neuron (min dist) and updates freq */
          /* finds best neuron (min dist-bias) and returns position */
          /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
          /* bias[i] = gamma*((1/netsize)-freq[i]) */
                int i, dist, a, biasdist, betafreq;
                int bestpos, bestbiaspos, bestd, bestbiasd;
                int[] n;
                bestd = ~(((int) 1) << 31);
                bestbiasd = bestd;
                bestpos = -1;
                bestbiaspos = bestpos;
                for (i = 0; i < netsize; i++) {
                    n = network[i];
                    dist = n[0] - b;
                    if (dist < 0)
                        dist = -dist;
                    a = n[1] - g;
                    if (a < 0)
                        a = -a;
                    dist += a;
                    a = n[2] - r;
                    if (a < 0)
                        a = -a;
                    dist += a;
                    if (dist < bestd) {
                        bestd = dist;
                        bestpos = i;
                    }
                    biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
                    if (biasdist < bestbiasd) {
                        bestbiasd = biasdist;
                        bestbiaspos = i;
                    }
                    betafreq = (freq[i] >> betashift);
                    freq[i] -= betafreq;
                    bias[i] += (betafreq << gammashift);
                }
                freq[bestpos] += beta;
                bias[bestpos] -= betagamma;
                return (bestbiaspos);
            }
        }

    LZWEncoder.java源码如下:

    package com.yeetrack.selenium.Image;
    
        import java.io.OutputStream;
        import java.io.IOException;
        //==============================================================================
        //  Adapted from Jef Poskanzer's Java port by way of J. M. G. Elliott.
        //  K Weiner 12/00
        class LZWEncoder {
            private static final int EOF = -1;
            private int imgW, imgH;
            private byte[] pixAry;
            private int initCodeSize;
            private int remaining;
            private int curPixel;
            // GIFCOMPR.C       - GIF Image compression routines
            //
            // Lempel-Ziv compression based on 'compress'.  GIF modifications by
            // David Rowley (mgardi@watdcsu.waterloo.edu)
            // General DEFINEs
            static final int BITS = 12;
            static final int HSIZE = 5003; // 80% occupancy
            // GIF Image compression - modified 'compress'
            //
            // Based on: compress.c - File compression ala IEEE Computer, June 1984.
            //
            // By Authors:  Spencer W. Thomas      (decvax!harpo!utah-cs!utah-gr!thomas)
            //              Jim McKie              (decvax!mcvax!jim)
            //              Steve Davies           (decvax!vax135!petsd!peora!srd)
            //              Ken Turkowski          (decvax!decwrl!turtlevax!ken)
            //              James A. Woods         (decvax!ihnp4!ames!jaw)
            //              Joe Orost              (decvax!vax135!petsd!joe)
            int n_bits; // number of bits/code
            int maxbits = BITS; // user settable max # bits/code
            int maxcode; // maximum code, given n_bits
            int maxmaxcode = 1 << BITS; // should NEVER generate this code
            int[] htab = new int[HSIZE];
            int[] codetab = new int[HSIZE];
            int hsize = HSIZE; // for dynamic table sizing
            int free_ent = 0; // first unused entry
            // block compression parameters -- after all codes are used up,
            // and compression rate changes, start over.
            boolean clear_flg = false;
            // Algorithm:  use open addressing double hashing (no chaining) on the
            // prefix code / next character combination.  We do a variant of Knuth's
            // algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
            // secondary probe.  Here, the modular division first probe is gives way
            // to a faster exclusive-or manipulation.  Also do block compression with
            // an adaptive reset, whereby the code table is cleared when the compression
            // ratio decreases, but after the table fills.  The variable-length output
            // codes are re-sized at this point, and a special CLEAR code is generated
            // for the decompressor.  Late addition:  construct the table according to
            // file size for noticeable speed improvement on small files.  Please direct
            // questions about this implementation to ames!jaw.
            int g_init_bits;
            int ClearCode;
            int EOFCode;
            // output
            //
            // Output the given code.
            // Inputs:
            //      code:   A n_bits-bit integer.  If == -1, then EOF.  This assumes
            //              that n_bits =< wordsize - 1.
            // Outputs:
            //      Outputs code to the file.
            // Assumptions:
            //      Chars are 8 bits long.
            // Algorithm:
            //      Maintain a BITS character long buffer (so that 8 codes will
            // fit in it exactly).  Use the VAX insv instruction to insert each
            // code in turn.  When the buffer fills up empty it and start over.
            int cur_accum = 0;
            int cur_bits = 0;
            int masks[] =
                    {
                            0x0000,
                            0x0001,
                            0x0003,
                            0x0007,
                            0x000F,
                            0x001F,
                            0x003F,
                            0x007F,
                            0x00FF,
                            0x01FF,
                            0x03FF,
                            0x07FF,
                            0x0FFF,
                            0x1FFF,
                            0x3FFF,
                            0x7FFF,
                            0xFFFF };
            // Number of characters so far in this 'packet'
            int a_count;
            // Define the storage for the packet accumulator
            byte[] accum = new byte[256];
            //----------------------------------------------------------------------------
            LZWEncoder(int width, int height, byte[] pixels, int color_depth) {
                imgW = width;
                imgH = height;
                pixAry = pixels;
                initCodeSize = Math.max(2, color_depth);
            }
            // Add a character to the end of the current packet, and if it is 254
            // characters, flush the packet to disk.
            void char_out(byte c, OutputStream outs) throws IOException {
                accum[a_count++] = c;
                if (a_count >= 254)
                    flush_char(outs);
            }
            // Clear out the hash table
            // table clear for block compress
            void cl_block(OutputStream outs) throws IOException {
                cl_hash(hsize);
                free_ent = ClearCode + 2;
                clear_flg = true;
                output(ClearCode, outs);
            }
            // reset code table
            void cl_hash(int hsize) {
                for (int i = 0; i < hsize; ++i)
                    htab[i] = -1;
            }
            void compress(int init_bits, OutputStream outs) throws IOException {
                int fcode;
                int i /* = 0 */;
                int c;
                int ent;
                int disp;
                int hsize_reg;
                int hshift;
                // Set up the globals:  g_init_bits - initial number of bits
                g_init_bits = init_bits;
                // Set up the necessary values
                clear_flg = false;
                n_bits = g_init_bits;
                maxcode = MAXCODE(n_bits);
                ClearCode = 1 << (init_bits - 1);
                EOFCode = ClearCode + 1;
                free_ent = ClearCode + 2;
                a_count = 0; // clear packet
                ent = nextPixel();
                hshift = 0;
                for (fcode = hsize; fcode < 65536; fcode *= 2)
                    ++hshift;
                hshift = 8 - hshift; // set hash code range bound
                hsize_reg = hsize;
                cl_hash(hsize_reg); // clear hash table
                output(ClearCode, outs);
                outer_loop : while ((c = nextPixel()) != EOF) {
                    fcode = (c << maxbits) + ent;
                    i = (c << hshift) ^ ent; // xor hashing
                    if (htab[i] == fcode) {
                        ent = codetab[i];
                        continue;
                    } else if (htab[i] >= 0) // non-empty slot
                    {
                        disp = hsize_reg - i; // secondary hash (after G. Knott)
                        if (i == 0)
                            disp = 1;
                        do {
                            if ((i -= disp) < 0)
                                i += hsize_reg;
                            if (htab[i] == fcode) {
                                ent = codetab[i];
                                continue outer_loop;
                            }
                        } while (htab[i] >= 0);
                    }
                    output(ent, outs);
                    ent = c;
                    if (free_ent < maxmaxcode) {
                        codetab[i] = free_ent++; // code -> hashtable
                        htab[i] = fcode;
                    } else
                        cl_block(outs);
                }
                // Put out the final code.
                output(ent, outs);
                output(EOFCode, outs);
            }
            //----------------------------------------------------------------------------
            void encode(OutputStream os) throws IOException {
                os.write(initCodeSize); // write "initial code size" byte
                remaining = imgW * imgH; // reset navigation variables
                curPixel = 0;
                compress(initCodeSize + 1, os); // compress and write the pixel data
                os.write(0); // write block terminator
            }
            // Flush the packet to disk, and reset the accumulator
            void flush_char(OutputStream outs) throws IOException {
                if (a_count > 0) {
                    outs.write(a_count);
                    outs.write(accum, 0, a_count);
                    a_count = 0;
                }
            }
            final int MAXCODE(int n_bits) {
                return (1 << n_bits) - 1;
            }
            //----------------------------------------------------------------------------
            // Return the next pixel from the image
            //----------------------------------------------------------------------------
            private int nextPixel() {
                if (remaining == 0)
                    return EOF;
                --remaining;
                byte pix = pixAry[curPixel++];
                return pix & 0xff;
            }
            void output(int code, OutputStream outs) throws IOException {
                cur_accum &= masks[cur_bits];
                if (cur_bits > 0)
                    cur_accum |= (code << cur_bits);
                else
                    cur_accum = code;
                cur_bits += n_bits;
                while (cur_bits >= 8) {
                    char_out((byte) (cur_accum & 0xff), outs);
                    cur_accum >>= 8;
                    cur_bits -= 8;
                }
                // If the next entry is going to be too big for the code size,
                // then increase it, if possible.
                if (free_ent > maxcode || clear_flg) {
                    if (clear_flg) {
                        maxcode = MAXCODE(n_bits = g_init_bits);
                        clear_flg = false;
                    } else {
                        ++n_bits;
                        if (n_bits == maxbits)
                            maxcode = maxmaxcode;
                        else
                            maxcode = MAXCODE(n_bits);
                    }
                }
                if (code == EOFCode) {
                    // At EOF, write the rest of the buffer.
                    while (cur_bits > 0) {
                        char_out((byte) (cur_accum & 0xff), outs);
                        cur_accum >>= 8;
                        cur_bits -= 8;
                    }
                    flush_char(outs);
                }
            }
        }

    AnimatedGifEncoder.java源码如下:

    package com.yeetrack.selenium.Image;
    
        import java.io.*;
        import java.awt.*;
        import java.awt.image.*;
    
        /**
         * Class AnimatedGifEncoder - Encodes a GIF file consisting of one or
         * more frames.
         * <pre>
         * Example:
         *    AnimatedGifEncoder e = new AnimatedGifEncoder();
         *    e.start(outputFileName);
         *    e.setDelay(1000);   // 1 frame per sec
         *    e.addFrame(image1);
         *    e.addFrame(image2);
         *    e.finish();
         * </pre>
         * No copyright asserted on the source code of this class.  May be used
         * for any purpose, however, refer to the Unisys LZW patent for restrictions
         * on use of the associated LZWEncoder class.  Please forward any corrections
         * to kweiner@fmsware.com.
         *
         * @author Kevin Weiner, FM Software
         * @version 1.03 November 2003
         *
         */
    
        public class AnimatedGifEncoder {
    
            protected int width; // image size
            protected int height;
            protected Color transparent = null; // transparent color if given
            protected int transIndex; // transparent index in color table
            protected int repeat = -1; // no repeat
            protected int delay = 0; // frame delay (hundredths)
            protected boolean started = false; // ready to output frames
            protected OutputStream out;
            protected BufferedImage image; // current frame
            protected byte[] pixels; // BGR byte array from frame
            protected byte[] indexedPixels; // converted frame indexed to palette
            protected int colorDepth; // number of bit planes
            protected byte[] colorTab; // RGB palette
            protected boolean[] usedEntry = new boolean[256]; // active palette entries
            protected int palSize = 7; // color table size (bits-1)
            protected int dispose = -1; // disposal code (-1 = use default)
            protected boolean closeStream = false; // close stream when finished
            protected boolean firstFrame = true;
            protected boolean sizeSet = false; // if false, get size from first frame
            protected int sample = 10; // default sample interval for quantizer
            /**
             * Sets the delay time between each frame, or changes it
             * for subsequent frames (applies to last frame added).
             *
             * @param ms int delay time in milliseconds
             */
            public void setDelay(int ms) {
                delay = Math.round(ms / 10.0f);
            }
            /**
             * Sets the GIF frame disposal code for the last added frame
             * and any subsequent frames.  Default is 0 if no transparent
             * color has been set, otherwise 2.
             * @param code int disposal code.
             */
            public void setDispose(int code) {
                if (code >= 0) {
                    dispose = code;
                }
            }
            /**
             * Sets the number of times the set of GIF frames
             * should be played.  Default is 1; 0 means play
             * indefinitely.  Must be invoked before the first
             * image is added.
             *
             * @param iter int number of iterations.
             * @return
             */
            public void setRepeat(int iter) {
                if (iter >= 0) {
                    repeat = iter;
                }
            }
            /**
             * Sets the transparent color for the last added frame
             * and any subsequent frames.
             * Since all colors are subject to modification
             * in the quantization process, the color in the final
             * palette for each frame closest to the given color
             * becomes the transparent color for that frame.
             * May be set to null to indicate no transparent color.
             *
             * @param c Color to be treated as transparent on display.
             */
            public void setTransparent(Color c) {
                transparent = c;
            }
            /**
             * Adds next GIF frame.  The frame is not written immediately, but is
             * actually deferred until the next frame is received so that timing
             * data can be inserted.  Invoking <code>finish()</code> flushes all
             * frames.  If <code>setSize</code> was not invoked, the size of the
             * first image is used for all subsequent frames.
             *
             * @param im BufferedImage containing frame to write.
             * @return true if successful.
             */
            public boolean addFrame(BufferedImage im) {
                if ((im == null) || !started) {
                    return false;
                }
                boolean ok = true;
                try {
                    if (!sizeSet) {
                        // use first frame's size
                        setSize(im.getWidth(), im.getHeight());
                    }
                    image = im;
                    getImagePixels(); // convert to correct format if necessary
                    analyzePixels(); // build color table & map pixels
                    if (firstFrame) {
                        writeLSD(); // logical screen descriptior
                        writePalette(); // global color table
                        if (repeat >= 0) {
                            // use NS app extension to indicate reps
                            writeNetscapeExt();
                        }
                    }
                    writeGraphicCtrlExt(); // write graphic control extension
                    writeImageDesc(); // image descriptor
                    if (!firstFrame) {
                        writePalette(); // local color table
                    }
                    writePixels(); // encode and write pixel data
                    firstFrame = false;
                } catch (IOException e) {
                    ok = false;
                }
                return ok;
            }
            /**
             * Flushes any pending data and closes output file.
             * If writing to an OutputStream, the stream is not
             * closed.
             */
            public boolean finish() {
                if (!started) return false;
                boolean ok = true;
                started = false;
                try {
                    out.write(0x3b); // gif trailer
                    out.flush();
                    if (closeStream) {
                        out.close();
                    }
                } catch (IOException e) {
                    ok = false;
                }
                // reset for subsequent use
                transIndex = 0;
                out = null;
                image = null;
                pixels = null;
                indexedPixels = null;
                colorTab = null;
                closeStream = false;
                firstFrame = true;
                return ok;
            }
            /**
             * Sets frame rate in frames per second.  Equivalent to
             * <code>setDelay(1000/fps)</code>.
             *
             * @param fps float frame rate (frames per second)
             */
            public void setFrameRate(float fps) {
                if (fps != 0f) {
                    delay = Math.round(100f / fps);
                }
            }
            /**
             * Sets quality of color quantization (conversion of images
             * to the maximum 256 colors allowed by the GIF specification).
             * Lower values (minimum = 1) produce better colors, but slow
             * processing significantly.  10 is the default, and produces
             * good color mapping at reasonable speeds.  Values greater
             * than 20 do not yield significant improvements in speed.
             *
             * @param quality int greater than 0.
             * @return
             */
            public void setQuality(int quality) {
                if (quality < 1) quality = 1;
                sample = quality;
            }
            /**
             * Sets the GIF frame size.  The default size is the
             * size of the first frame added if this method is
             * not invoked.
             *
             * @param w int frame width.
             * @param h int frame width.
             */
            public void setSize(int w, int h) {
                if (started && !firstFrame) return;
                width = w;
                height = h;
                if (width < 1) width = 320;
                if (height < 1) height = 240;
                sizeSet = true;
            }
            /**
             * Initiates GIF file creation on the given stream.  The stream
             * is not closed automatically.
             *
             * @param os OutputStream on which GIF images are written.
             * @return false if initial write failed.
             */
            public boolean start(OutputStream os) {
                if (os == null) return false;
                boolean ok = true;
                closeStream = false;
                out = os;
                try {
                    writeString("GIF89a"); // header
                } catch (IOException e) {
                    ok = false;
                }
                return started = ok;
            }
            /**
             * Initiates writing of a GIF file with the specified name.
             *
             * @param file String containing output file name.
             * @return false if open or initial write failed.
             */
            public boolean start(String file) {
                boolean ok = true;
                try {
                    out = new BufferedOutputStream(new FileOutputStream(file));
                    ok = start(out);
                    closeStream = true;
                } catch (IOException e) {
                    ok = false;
                }
                return started = ok;
            }
            /**
             * Analyzes image colors and creates color map.
             */
            protected void analyzePixels() {
                int len = pixels.length;
                int nPix = len / 3;
                indexedPixels = new byte[nPix];
                NeuQuant nq = new NeuQuant(pixels, len, sample);
                // initialize quantizer
                colorTab = nq.process(); // create reduced palette
                // convert map from BGR to RGB
                for (int i = 0; i < colorTab.length; i += 3) {
                    byte temp = colorTab[i];
                    colorTab[i] = colorTab[i + 2];
                    colorTab[i + 2] = temp;
                    usedEntry[i / 3] = false;
                }
                // map image pixels to new palette
                int k = 0;
                for (int i = 0; i < nPix; i++) {
                    int index =
                            nq.map(pixels[k++] & 0xff,
                                    pixels[k++] & 0xff,
                                    pixels[k++] & 0xff);
                    usedEntry[index] = true;
                    indexedPixels[i] = (byte) index;
                }
                pixels = null;
                colorDepth = 8;
                palSize = 7;
                // get closest match to transparent color if specified
                if (transparent != null) {
                    transIndex = findClosest(transparent);
                }
            }
            /**
             * Returns index of palette color closest to c
             *
             */
            protected int findClosest(Color c) {
                if (colorTab == null) return -1;
                int r = c.getRed();
                int g = c.getGreen();
                int b = c.getBlue();
                int minpos = 0;
                int dmin = 256 * 256 * 256;
                int len = colorTab.length;
                for (int i = 0; i < len;) {
                    int dr = r - (colorTab[i++] & 0xff);
                    int dg = g - (colorTab[i++] & 0xff);
                    int db = b - (colorTab[i] & 0xff);
                    int d = dr * dr + dg * dg + db * db;
                    int index = i / 3;
                    if (usedEntry[index] && (d < dmin)) {
                        dmin = d;
                        minpos = index;
                    }
                    i++;
                }
                return minpos;
            }
            /**
             * Extracts image pixels into byte array "pixels"
             */
            protected void getImagePixels() {
                int w = image.getWidth();
                int h = image.getHeight();
                int type = image.getType();
                if ((w != width)
                        || (h != height)
                        || (type != BufferedImage.TYPE_3BYTE_BGR)) {
                    // create new image with right size/format
                    BufferedImage temp =
                            new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR);
                    Graphics2D g = temp.createGraphics();
                    g.drawImage(image, 0, 0, null);
                    image = temp;
                }
                pixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
            }
            /**
             * Writes Graphic Control Extension
             */
            protected void writeGraphicCtrlExt() throws IOException {
                out.write(0x21); // extension introducer
                out.write(0xf9); // GCE label
                out.write(4); // data block size
                int transp, disp;
                if (transparent == null) {
                    transp = 0;
                    disp = 0; // dispose = no action
                } else {
                    transp = 1;
                    disp = 2; // force clear if using transparent color
                }
                if (dispose >= 0) {
                    disp = dispose & 7; // user override
                }
                disp <<= 2;
                // packed fields
                out.write(0 | // 1:3 reserved
                        disp | // 4:6 disposal
                        0 | // 7   user input - 0 = none
                        transp); // 8   transparency flag
                writeShort(delay); // delay x 1/100 sec
                out.write(transIndex); // transparent color index
                out.write(0); // block terminator
            }
            /**
             * Writes Image Descriptor
             */
            protected void writeImageDesc() throws IOException {
                out.write(0x2c); // image separator
                writeShort(0); // image position x,y = 0,0
                writeShort(0);
                writeShort(width); // image size
                writeShort(height);
                // packed fields
                if (firstFrame) {
                    // no LCT  - GCT is used for first (or only) frame
                    out.write(0);
                } else {
                    // specify normal LCT
                    out.write(0x80 | // 1 local color table  1=yes
                            0 | // 2 interlace - 0=no
                            0 | // 3 sorted - 0=no
                            0 | // 4-5 reserved
                            palSize); // 6-8 size of color table
                }
            }
            /**
             * Writes Logical Screen Descriptor
             */
            protected void writeLSD() throws IOException {
                // logical screen size
                writeShort(width);
                writeShort(height);
                // packed fields
                out.write((0x80 | // 1   : global color table flag = 1 (gct used)
                        0x70 | // 2-4 : color resolution = 7
                        0x00 | // 5   : gct sort flag = 0
                        palSize)); // 6-8 : gct size
                out.write(0); // background color index
                out.write(0); // pixel aspect ratio - assume 1:1
            }
            /**
             * Writes Netscape application extension to define
             * repeat count.
             */
            protected void writeNetscapeExt() throws IOException {
                out.write(0x21); // extension introducer
                out.write(0xff); // app extension label
                out.write(11); // block size
                writeString("NETSCAPE" + "2.0"); // app id + auth code
                out.write(3); // sub-block size
                out.write(1); // loop sub-block id
                writeShort(repeat); // loop count (extra iterations, 0=repeat forever)
                out.write(0); // block terminator
            }
            /**
             * Writes color table
             */
            protected void writePalette() throws IOException {
                out.write(colorTab, 0, colorTab.length);
                int n = (3 * 256) - colorTab.length;
                for (int i = 0; i < n; i++) {
                    out.write(0);
                }
            }
            /**
             * Encodes and writes pixel data
             */
            protected void writePixels() throws IOException {
                LZWEncoder encoder =
                        new LZWEncoder(width, height, indexedPixels, colorDepth);
                encoder.encode(out);
            }
            /**
             *    Write 16-bit value to output stream, LSB first
             */
            protected void writeShort(int value) throws IOException {
                out.write(value & 0xff);
                out.write((value >> 8) & 0xff);
            }
            /**
             * Writes string to output stream
             */
            protected void writeString(String s) throws IOException {
                for (int i = 0; i < s.length(); i++) {
                    out.write((byte) s.charAt(i));
                }
            }
        }

    本文转自:http://www.yeetrack.com/?p=943

  • 相关阅读:
    利用@media screen实现网页布局的自适应
    js判断手机的左右滑动
    文档流
    对文本段落操作的一些细节
    简易菜单的制作
    jQuery Scroll Follow
    node 监听接口
    浏览器通知
    webSocket
    前端学习路线
  • 原文地址:https://www.cnblogs.com/dreammyle/p/4872612.html
Copyright © 2020-2023  润新知