• 卡尔曼滤波器之我见(完善中...)


      最近事情有点多,忙的有点上火,必需要权衡多个方面.下面结合这个网页中的代码修改的卡尔曼算法,便于多个角度的卡尔曼滤波,程序如下:

    定义 的结构体

    struct GyroKalman
    {    
         float angle,angle_dot,val ;         //外部需要引用的变量
         float P[2][2];                                            
         float Pdot[4];
         float q_bias, angle_err, PCt_0, PCt_1, E, K_0, K_1, t_0, t_1;
         //const int temp=5;    结构体中不能有const
    };

    滤波算法:

    //-------------------------------------------------------
    ////-------------------------------------------------------
    //-------------------------------------------------------
    
    void init_GyroDKalman(struct GyroKalman *G)
    {
            G->P[0][0] = 1;
            G->P[0][1] = 0;
            G->P[1][0] = 0;
            G->P[1][1] = 1;
            G->Pdot[0] = 0;
            G->Pdot[1] = 0;
            G->Pdot[2] = 0;
            G->Pdot[3] = 0;
            G->q_bias=0;
          G->angle_err=0; 
            G->PCt_0=0; 
            G->PCt_1=0; 
          G->E=0;
            G->K_0=0;
            G->K_1=0; 
            G->t_0=0;
            G->t_1=0;
    }
    
    
    
    //注意:dt的取值为kalman滤波器采样时间;
    static const float dt=0.005;
    static const char C_0 = 1;
    static const float Q_angle=0.001, Q_gyro=0.003, R_angle=0.5;
    //-------------------------------------------------------
    void Kalman_Filter(float angle_m,struct GyroKalman *gyro_m)            //gyro_m:gyro_measure
    {                                                    //传递的参数为弧度    

    /* X(K|K-1)=AX(K-1|K-1)+BU(K) 公式 1 */
    gyro_m->angle+=(gyro_m->val-gyro_m->q_bias) * dt; /*单位 弧度,弧度/秒 */
    /* P(K|K-1)=AP(K-1|K-1)A`+Q 公式 2 对协方差求导,进行线性近似*/
    gyro_m->Pdot[0]=Q_angle - gyro_m->P[0][1] - gyro_m->P[1][0];
    gyro_m->Pdot[1]=- gyro_m->P[1][1];
    gyro_m->Pdot[2]=- gyro_m->P[1][1];
    gyro_m->Pdot[3]=Q_gyro;
    gyro_m->P[0][0] += gyro_m->Pdot[0] * dt;
    gyro_m->P[0][1] += gyro_m->Pdot[1] * dt;
    gyro_m->P[1][0] += gyro_m->Pdot[2] * dt;
    gyro_m->P[1][1] += gyro_m->Pdot[3] * dt;
    gyro_m->angle_err = angle_m - gyro_m->angle;
    gyro_m->PCt_0 = C_0 * gyro_m->P[0][0];
    gyro_m->PCt_1 = C_0 * gyro_m->P[1][0];
    gyro_m->E = R_angle + C_0 * gyro_m->PCt_0; /*E=HP(K|(K-1))H'+R */
    gyro_m->K_0 = gyro_m->PCt_0 / gyro_m->E; /*Kg(k)=P(K|(K-1)H'/(HP(K|(K-1))H'+R) 公式 4 */
    gyro_m->K_1 = gyro_m->PCt_1 / gyro_m->E;
    gyro_m->t_0 = gyro_m->PCt_0;
    gyro_m->t_1 = C_0 * gyro_m->P[0][1];
    gyro_m->P[0][0] -= gyro_m->K_0 * gyro_m->t_0; //P(K|K)=(I-Kg(K)H)*P(K|(K-1)) 公式 5
    gyro_m->P[0][1] -= gyro_m->K_0 * gyro_m->t_1;
    gyro_m->P[1][0] -= gyro_m->K_1 * gyro_m->t_0;
    gyro_m->P[1][1] -= gyro_m->K_1 * gyro_m->t_1;
    /*后验估计 X(k|k)=X(K|K-1)+Kg(k)(Z(k)-HX(K|K-1)) 公式 3 ,Z(K)是K 时刻的测量值也就是代码中的 angle_m */
    gyro_m->angle += gyro_m->K_0 * gyro_m->angle_err; 

    gyro_m->q_bias+= gyro_m->K_1 * gyro_m->angle_err;

    gyro_m->angle_dot = gyro_m->val-gyro_m->q_bias; //这里angle_dot与angle在PID控制中会起到作用

            
    }

    下面进行一下,简单的移动平均滤波,卡尔曼,互补滤波三种滤波方法. 红为 单陀螺仪 积分数据,黄为卡尔曼滤波,蓝为 互补滤波

    有振动情况下,不晃动四轴:

     

    由振动不晃动到静止不晃动:

    振动,晃动

    最终:

    总结上面这些曲线,得出结论:卡尔曼在 0漂拟制上与互补滤波相当 ,在转动效果上与 单陀螺仪测量的数据相当,不易受振动的影响.

    上位机用的自己写的软件,直观观察卡尔曼是首选的滤波算法,但是目前来看只适合单轴,我本想应用到四轴上来,目前还没有找到较

    好的方法与四元数结合起来.

    最左为滑动平均滤波,已经不知道漂到哪里去了,中间是卡尔曼滤波,反应较快,最右则是互补滤波,反应有点迟缓,易受振动影响.

    博客为本人所写,转载请表明出处,卡尔曼滤波器之我见(完善中...)

  • 相关阅读:
    CentOS7.5 搭建MyCat1.6.6
    idea快速搭建springboot项目
    MySQL存储过程中变量及循环的使用
    windows 安装 jdk1.8并配置环境变量
    CentOS7.5安装JDK1.8
    CentOS7.2安装MySql5.7并开启远程连接授权
    PHP高级工程师面试
    每日英语
    静态化
    php分页实例及其原理
  • 原文地址:https://www.cnblogs.com/dreamfactory/p/3006643.html
Copyright © 2020-2023  润新知