Linux 内核关于 MSS 实现的细节
Linux 内核在tcp_sock
这个数据结构中保存与 MSS
有关的信息。
struct tcp_sock{ // code omitted struct tcp_options_received rx_opt; { // code omitted... u16 user_mss; /* 用户通过TCP_MAXSEG设置的MSS */ u16 mss_clamp; /* 在连接建立阶段协商出来的 min(user_mss, SYN's mss) 即对端通告的MSS */ } // code omitted... u32 mss_cache; // 有效MSS, = rx_opt.mss_clamp - TCP附件选项(如 时间戳12字节) u16 advmss; }
各个字段的意义如下:
rx_opt.user_mss
:用户设置的本端 MSS。用户可以通过TCP_MAXSEG
这个 socket 选项对这个字段进行设置,这个字段在rx_opt
中,说明用户设置该字段起到的作用就如同收到了对端通告的 MSS 值。rx_opt.mss_clamp
: 连接建立阶段本端计算出的 MSS。它取user_mss
和 对端 SYN(SYNACK) 报文通告的 MSS 值中的较小值,如果用户没有设置 user_mss,则就为对端报文中的 MSS 值。clamp 中文翻译为”夹钳”,我们可以理解为生效 MSS的最大值。mss_cache
: 生效 MSS。它是这几个字段中最重要的,表示本端 TCP 发包实际的分段大小依据,它的值在连接过程中可能发生变化。advmss
:本端向对端通告的包含option的 MSS 值。举个例子,当网卡 MTU 为 1500 字节时,通信双方通告的 MSS 都应该为 1460 字节,但如果双方都开启了 TCP timestamp 选项(会占用 12 字节),则advmss
的值会是 1448
mss_cache
mss_cache
在 Linux 内核中表示 TCP 连接当前生效的 MSS,它是如此重要,我们来看下它的值是如何确定的。
首先,无论是主动端还是被动端,在创建tcp_sock
时,就会对mss_cache
进行初始化为 TCP_MSS_DEFAULT(536)
void tcp_init_sock(struct sock *sk) { // code omitted tp->mss_cache = TCP_MSS_DEFAULT; }
在这之后,通过tcp_sync_mss()
方法,内核可以对mss_cache
进行修改。
unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) { struct tcp_sock *tp = tcp_sk(sk); struct inet_connection_sock *icsk = inet_csk(sk); int mss_now; /* 用 pmtu 计算 mss_now */ mss_now = tcp_mtu_to_mss(sk, pmtu); | |-- __tcp_mtu_to_mss(sk, pmtu) - (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); /* 其他条件限制 mss_now */ // code omitted tp->mss_cache = mss_now; // code omitted }
在不考虑其他条件(如对端最大接收窗口大小)时,mss_cache
的值由tcp_mtu_to_mss()
计算而来,进而由__tcp_mtu_to_mss()
减去 TCP 首部的 option 长度而来
而__tcp_mtu_to_mss()
呢?它也就是传入的 pmtu 减去IP首部长度(含option),在减去TCP首部长度(不含option)。噢,对了,它还不能超过rx_opt.mss_clamp
static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) { const struct tcp_sock *tp = tcp_sk(sk); const struct inet_connection_sock *icsk = inet_csk(sk); int mss_now; /* Calculate base mss without TCP options: It is MMS_S - sizeof(tcphdr) of rfc1122 */ mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); // code omitted /* Clamp it (mss_clamp does not include tcp options) */ if (mss_now > tp->rx_opt.mss_clamp) mss_now = tp->rx_opt.mss_clamp; // code omitted return mss_now; }
所以,如果tcp_sync_mss()
传入的pmtu
等于 1500,IP 不包含任何 option,则__tcp_mtu_to_mss
会得到1500-20-20=1460
,如果 TCP 使能了 timestamp,则tcp_mtu_to_mss()
会返回1460-(32-20)=1448
那么,tcp_mtu_to_mss()
在什么时候被调用呢?
- 对 TCP 主动端,它在连接初始化时会根据自身 mtu 设置
mss_cache
tcp_connect_init | |-- tcp_sync_mss(sk, dst_mtu(dst))
- 对 TCP 被动端,它则在三次握手完成的时候根据 mtu 设置
mss_cache
tcp_v4_syn_recv_sock: | |-- tcp_sync_mss(newsk, dst_mtu(dst));
- 而在连接建立之后,如果 TCP 报文超过了传输路径上某个网络设备的 mtu,且报文设置了 DF (Don’t Fragment) 标记,则该设备会反馈一个 ICMP_FRAG_NEEDED 报文,并携带支持的最大 mtu 值。原来的报文发送端收到该 ICMP 报文后,变会调整自己的
mss_cache
void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
|
|-- dst = inet_csk_update_pmtu(sk, mtu);
|-- tcp_sync_mss(sk, mtu);
通信双方是如何将 mss_cache 设为一致的
有了前面的铺垫,再来看所谓的 MSS “协商过程”就容易多了。
这里我用两台虚拟机作为 TCP 连接的双方,虚拟机网卡的默认 mtu 是 1500,而我将主动端虚拟机网卡 mtu 设置为 1399. TCP 默认开启了 timestamp 选项。
最终主动端(vm-2)和被动端(vm-1)的mss_cache
都被设置成了 1347
- 主动端:mss_cache = 1399(mtu) - 20(IP首部) - 20(TCP首部) - 12(timestamp) = 1347
- 被动端:mss_cache = 1359(mss_clamp) - 12(timestamp) = 1347
Linux内核源码处理ICMP packet too big与DF
结论
- ICMP packet too big
对ICMP packet too big的处理,TCP/UDP最终都对对应路由条目进行MTU更新。而TCP的MTU、MSS、窗口大小和最终段大小的关系比较复杂,目前没有看明白。 - Don’t fragment
DF位的默认配置,受系统配置控制,Ubuntu 14.04默认开启MTU发现功能。推断结果:UDP大报文默认未置上,而TCP大报文默认置上。
Linux内核如何处理ICMP Packet too big
ICMP流程
报文类型:
23 #define ICMP_DEST_UNREACH 3 /* Destination Unreachable */ 43 #define ICMP_FRAG_NEEDED 4 /* Fragmentation Needed/DF set */
if (ip_exceeds_mtu(skb, mtu)) { IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, htonl(mtu)); goto drop; }
https://kernel.googlesource.com/pub/scm/linux/kernel/git/nico/archive/+/24497521076f7ce46c176d2dad018744e6f8cedd/net/inet/icmp.c
iCMP差错报文的数据部分包括:原始数据报的IP首部再加上前8个字节的数据部分(2字节源端口+2字节目的端口+4字节序号)
icmp_send(skb,ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, dev->mtu, dev);
icmp_send(struct sk_buff *skb_in, int type, int code, struct device *dev) { struct sk_buff *skb; struct iphdr *iph; int offset; struct icmphdr *icmph; int len; DPRINTF((DBG_ICMP, "icmp_send(skb_in = %X, type = %d, code = %d, dev=%X) ", skb_in, type, code, dev)); /* Get some memory for the reply. */ len = sizeof(struct sk_buff) + dev->hard_header_len + sizeof(struct iphdr) + sizeof(struct icmphdr) + sizeof(struct iphdr) + 8; /* amount of header to return ,8 字节*/ skb = (struct sk_buff *) alloc_skb(len, GFP_ATOMIC); if (skb == NULL) return; skb->sk = NULL; skb->mem_addr = skb; skb->mem_len = len; len -= sizeof(struct sk_buff); /* Find the IP header. */ iph = (struct iphdr *) (skb_in->data + dev->hard_header_len); /* Build Layer 2-3 headers for message back to source. */ offset = ip_build_header(skb, dev->pa_addr, iph->saddr, &dev, IPPROTO_ICMP, NULL, len, skb_in->ip_hdr->tos,255); if (offset < 0) { skb->sk = NULL; kfree_skb(skb, FREE_READ); return; } /* Re-adjust length according to actual IP header size. */ skb->len = offset + sizeof(struct icmphdr) + sizeof(struct iphdr) + 8; icmph = (struct icmphdr *) (skb->data + offset); icmph->type = type; icmph->code = code;//mtu值,传给对方 icmph->checksum = 0; icmph->un.gateway = 0; memcpy(icmph + 1, iph, sizeof(struct iphdr) + 8); // 8字节,包含传输层源端口和目的端口 icmph->checksum = ip_compute_csum((unsigned char *)icmph, sizeof(struct icmphdr) + sizeof(struct iphdr) + 8); DPRINTF((DBG_ICMP, ">> ")); print_icmp(icmph); /* Send it and free it. */ ip_queue_xmit(NULL, dev, skb, 1); }
icmp_rcv(struct sk_buff *skb),根据ICMP类型处理skb:
icmp_pointers[icmph->type].handler(skb);
icmp_pointers的定义显示,ICMP_DEST_UNRAECH的handler为icmp_unreach,后者获取出ICMP头部的mtu后,投递给icmp_socket_deliver(skb, mtu)。icmp_socket_deliver
最终将skb和mtu值投递给ipprot->err_handler(skb, info);
/* Handle ICMP_UNREACH and ICMP_QUENCH. */ static void icmp_unreach(struct icmphdr *icmph, struct sk_buff *skb) { struct inet_protocol *ipprot; struct iphdr *iph; unsigned char hash; int err; err = (icmph->type << 8) | icmph->code; iph = (struct iphdr *) (icmph + 1); switch(icmph->code & 7) { case ICMP_NET_UNREACH: DPRINTF((DBG_ICMP, "ICMP: %s: network unreachable. ", in_ntoa(iph->daddr))); break; case ICMP_HOST_UNREACH: DPRINTF((DBG_ICMP, "ICMP: %s: host unreachable. ", in_ntoa(iph->daddr))); break; case ICMP_PROT_UNREACH: printk("ICMP: %s:%d: protocol unreachable. ", in_ntoa(iph->daddr), ntohs(iph->protocol)); break; case ICMP_PORT_UNREACH: DPRINTF((DBG_ICMP, "ICMP: %s:%d: port unreachable. ", in_ntoa(iph->daddr), -1 /* FIXME: ntohs(iph->port) */)); break; case ICMP_FRAG_NEEDED: printk("ICMP: %s: fragmentation needed and DF set. ", in_ntoa(iph->daddr)); break; case ICMP_SR_FAILED: printk("ICMP: %s: Source Route Failed. ", in_ntoa(iph->daddr)); break; default: DPRINTF((DBG_ICMP, "ICMP: Unreachable: CODE=%d from %s ", (icmph->code & 7), in_ntoa(iph->daddr))); break; } /* Get the protocol(s). */ hash = iph->protocol & (MAX_INET_PROTOS -1); /* This can change while we are doing it. */ ipprot = (struct inet_protocol *) inet_protos[hash]; while(ipprot != NULL) { struct inet_protocol *nextip; nextip = (struct inet_protocol *) ipprot->next; /* Pass it off to everyone who wants it. */ if (iph->protocol == ipprot->protocol && ipprot->err_handler) { ipprot->err_handler(err, (unsigned char *)(icmph + 1), iph->daddr, iph->saddr, ipprot); } ipprot = nextip; } skb->sk = NULL; kfree_skb(skb, FREE_READ); }
TCP流程
tcp_v4_err(skb, info),
调用tcp_v4_mtu_reduced(struct sock *sk)
更新路由的MTU,inet_csk_update_pmtu(struct sock *sk, u32 mtu)
找到路由inet_csk_rebuild_route(sk, &inet->cork.fl);
更新路由MTU dst->ops->update_pmtu(dst, sk, NULL, mtu);
tcp_v4_err
,如果MTU变小,且可分片,则会tcp_sync_mss(struct sock *sk, u32 pmtu)。关于TCP的MSS与MTU相关的内容很多:
1274 /* This function synchronize snd mss to current pmtu/exthdr set. 1275 1276 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1277 for TCP options, but includes only bare TCP header. 1278 1279 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1280 It is minimum of user_mss and mss received with SYN. 1281 It also does not include TCP options. 1282 1283 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1284 1285 tp->mss_cache is current effective sending mss, including 1286 all tcp options except for SACKs. It is evaluated, 1287 taking into account current pmtu, but never exceeds 1288 tp->rx_opt.mss_clamp. 1289 1290 NOTE1. rfc1122 clearly states that advertised MSS 1291 DOES NOT include either tcp or ip options. 1292 1293 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1294 are READ ONLY outside this function. --ANK (980731) 1295 */
case ICMP_DEST_UNREACH: if (code > NR_ICMP_UNREACH) goto out; if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ /* We are not interested in TCP_LISTEN and open_requests * (SYN-ACKs send out by Linux are always <576bytes so * they should go through unfragmented). */ if (sk->sk_state == TCP_LISTEN) goto out; tp->mtu_info = info; if (!sock_owned_by_user(sk)) { tcp_v4_mtu_reduced(sk); } else { if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags)) sock_hold(sk); } goto out; }
/* * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. * It can be called through tcp_release_cb() if socket was owned by user * at the time tcp_v4_err() was called to handle ICMP message. */ void tcp_v4_mtu_reduced(struct sock *sk) { struct inet_sock *inet = inet_sk(sk); struct dst_entry *dst; u32 mtu; if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) return; mtu = tcp_sk(sk)->mtu_info; dst = inet_csk_update_pmtu(sk, mtu); if (!dst) return; /* Something is about to be wrong... Remember soft error * for the case, if this connection will not able to recover. */ if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) sk->sk_err_soft = EMSGSIZE; mtu = dst_mtu(dst); if (inet->pmtudisc != IP_PMTUDISC_DONT && ip_sk_accept_pmtu(sk) && inet_csk(sk)->icsk_pmtu_cookie > mtu) { tcp_sync_mss(sk, mtu); /* Resend the TCP packet because it's * clear that the old packet has been * dropped. This is the new "fast" path mtu * discovery. */ tcp_simple_retransmit(sk); } /* else let the usual retransmit timer handle it */ }
* 目的不可达、源端被关闭、超时、参数错误这四种类型 * 的差错ICMP报文,都是由同一个函数icmp_unreach()来处理的, * 对其中目的不可达、源端被关闭这两种类型ICMP报文 * 因要提取某些信息而需作一些特殊的处理,而另外 * 一些则不需要,根据差错报文中的信息直接调用 * 传输层的错误处理例程。参见<Linux内核源码剖析348页> iCMP差错报文的数据部分包括:原始数据报的IP首部再加上前8个字节的数据部分(2字节源端口+2字节目的端口+4字节序号) */ void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) {
struct iphdr *iph = (struct iphdr *)icmp_skb->data; struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); struct inet_connection_sock *icsk; struct tcp_sock *tp; struct inet_sock *inet; const int type = icmp_hdr(icmp_skb)->type; const int code = icmp_hdr(icmp_skb)->code; struct sock *sk; struct sk_buff *skb; __u32 seq; __u32 remaining; int err; struct net *net = dev_net(icmp_skb->dev); /* * 检测ICMP报文长度是否包含了原始IP首部和原始IP数据包中 * 前8字节数据,如果不完整则返回 */ if (icmp_skb->len < (iph->ihl << 2) + 8) { ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); return; } /* * 通过从ICMP报文数据中获取的原始TCP首部中源端口号和IP首部 * 中源地址,得到发送该TCP报文的传输控制块。如果获取失败, * 则说明ICMP报文有误或该套接字已关闭;如果获取传输控制块 * 的TCP状态为TIME_WAIT,则说明套接字即将关闭,这两种情况 * 都无需进一步处理 */ sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest, iph->saddr, th->source, inet_iif(icmp_skb));
}
UDP流程
__udp4_lib_err(struct sk_buff skb, u32 info, struct udp_table udptable)
ipv4_sk_update_pmtu(struct sk_buff skb, struct sock sk, u32 mtu),也是基于路由更新MTU。
__ip_rt_update_pmtu
ping报文的处理也是类似,见ping_err。
Linux内核对DF的默认处理
经阅读代码,发现控制DF标志的地方主要有两处:
- inet_sock.pmtudisc
- sk_buff.local_df
以关键字pmtudisc和local_df做全局字符串搜索,发现对pmtudisc和local_df有赋值的地方很少。如下各小节分析。
90 /* IP_MTU_DISCOVER values */ 91 #define IP_PMTUDISC_DONT 0 /* Never send DF frames */ 92 #define IP_PMTUDISC_WANT 1 /* Use per route hints */ 93 #define IP_PMTUDISC_DO 2 /* Always DF */ 94 #define IP_PMTUDISC_PROBE 3 /* Ignore dst pmtu */
IP报文发送出口
源代码:ip_queue_xmit和__ip_make_skb,后者用于UDP。
382 if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df) 383 iph->frag_off = htons(IP_DF); 384 else 385 iph->frag_off = 0; 248 int ip_dont_fragment(struct sock *sk, struct dst_entry *dst) 249 { 250 return inet_sk(sk)->pmtudisc == IP_PMTUDISC_DO || 251 (inet_sk(sk)->pmtudisc == IP_PMTUDISC_WANT && 252 !(dst_metric_locked(dst, RTAX_MTU))); 253 }
AF_INET协议族
inet_create,依赖ipv4_config
配置。该配置体现在/proc/sys/net/ipv4/ip_no_pmtu_disc
,目前Ubuntu 14.04上默认ip_no_pmtu_disc=0
,即由每个路由确定。
374 if (ipv4_config.no_pmtu_disc) 375 inet->pmtudisc = IP_PMTUDISC_DONT; 376 else 377 inet->pmtudisc = IP_PMTUDISC_WANT;
系统配置
可用sysctl
命令配置,或通过/etc/sysctl.conf
配置文件配置ip_no_pmtu_disc
值,最终体现在/proc/sys/net/ipv4/ip_no_pmtu_disc
。源码链接。
ICMP报文
默认创建ICMP sk时,不发送DF报文。icmp_sk_init(struct net *net)。
PS:ICMP报文不超过576字节的限制在icmp_send接口中有体现。