• UVA11019 Matrix Matcher【hash傻逼题】【AC自动机好题】


    LINK1

    LINK2


    题目大意

    让你在一个大小为(n*m)的矩阵中找大小是(x*y)的矩阵的出现次数

    思路1:Hash

    hash思路及其傻逼

    你把一维情况扩展一下

    一维是一个bas,那你二维就用两个bas好了

    对一个在((i,j))的字符,令他的hash值是(c_{i,j}*bas1^i*bas2^j)

    然后算出矩阵hash值乘上差量判断就做完了

    70ms


    //Author: dream_maker
    #include<bits/stdc++.h>
    using namespace std;
    //----------------------------------------------
    typedef pair<int, int> pi;
    typedef long long ll;
    typedef double db;
    #define fi first
    #define se second
    #define fu(a, b, c) for (int a = b; a <= c; ++a)
    #define fd(a, b, c) for (int a = b; a >= c; --a)
    #define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
    const int INF_of_int = 1e9;
    const ll INF_of_ll = 1e18;
    template <typename T>
    void Read(T &x) {
      bool w = 1;x = 0;
      char c = getchar();
      while (!isdigit(c) && c != '-') c = getchar();
      if (c == '-') w = 0, c = getchar();
      while (isdigit(c)) {
        x = (x<<1) + (x<<3) + c -'0';
        c = getchar();
      }
      if (!w) x = -x;
    }
    template <typename T>
    void Write(T x) {
      if (x < 0) {
        putchar('-');
        x = -x;
      }
      if (x > 9) Write(x / 10);
      putchar(x % 10 + '0');
    }
    //----------------------------------------------
    const int N = 1e3 + 10;
    const int Mod = 998244353;
    const int bas1 = 233333;
    const int bas2 = 19260817;
    
    int pow1[N], pow2[N];
    int n, m, x, y;
    char s[N][N], c[N][N];
    int sum[N][N], val;
    
    int add(int a, int b) {
      return (a += b) >= Mod ? a - Mod : a;
    }
    
    int mul(int a, int b) {
      return 1ll * a * b % Mod;
    }
    
    int sub(int a, int b) {
      return (a -= b) < 0 ? a + Mod : a;
    }
    
    int fast_pow(int a, int b) {
      int res = 1;
      while (b) {
        if (b & 1) res = mul(res, a);
        b >>= 1;
        a = mul(a, a);
      }
      return res;
    }
    
    void init() {
      pow1[0] = pow2[0] = 1;
      fu(i, 1, N - 1) pow1[i] = mul(bas1, pow1[i - 1]);
      fu(i, 1, N - 1) pow2[i] = mul(bas2, pow2[i - 1]);
    }
    
    void getsum() {
      fu(i, 1, n)
        fu(j, 1, m)
          sum[i][j] = add(sub(add(sum[i][j - 1], sum[i - 1][j]), sum[i - 1][j - 1]), mul(s[i][j], mul(pow1[i], pow2[j])));
      val = 0;
      fu(i, 1, x)
        fu(j, 1, y) val = add(val, mul(c[i][j], mul(pow1[i], pow2[j])));
    }
    
    void solve() {
      Read(n), Read(m);
      fu(i, 1, n) scanf("%s", s[i] + 1);
      Read(x), Read(y);
      fu(i, 1, x) scanf("%s", c[i] + 1);
      getsum();
      int ans = 0;
      fu(i, x, n)
        fu(j, y, m)
          if (sub(add(sum[i][j], sum[i - x][j - y]), add(sum[i][j - y], sum[i - x][j])) == mul(val, mul(pow1[i - x], pow2[j - y])))
            ++ans;
      Write(ans), putchar('
    ');
    }
    
    int main() {
    #ifdef dream_maker
      freopen("input.txt", "r", stdin);
    #endif
      int T; Read(T);
      init();
      while (T--) solve();
      return 0;
    }
    

    思路2:AC自动机

    用AC自动机来考虑的话这题挺好的

    虽然跑600ms

    考虑一下把模式串分解变成x个长度是y的串

    然后全部塞进AC自动机

    然后考虑算出在(n*m)的矩阵中有哪些串在哪些位置出现过

    这个东西跑一边就可以处理出来

    如果有不好处理的细节你就想怎么暴力怎么来

    然后我们考虑假如在((i,j))这个位置匹配到了第k行

    那么对于左上角在((i-k,j))的矩阵显然是可以匹配第k行的

    那么我们就记录一下每个节点是左上角的矩阵最多能匹配多少行就可以了


    //Author: dream_maker
    #include<bits/stdc++.h>
    using namespace std;
    //----------------------------------------------
    typedef pair<int, int> pi;
    typedef long long ll;
    typedef double db;
    #define fi first
    #define se second
    #define fu(a, b, c) for (int a = b; a <= c; ++a)
    #define fd(a, b, c) for (int a = b; a >= c; --a)
    #define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
    const int INF_of_int = 1e9;
    const ll INF_of_ll = 1e18;
    template <typename T>
    void Read(T &x) {
      bool w = 1;x = 0;
      char c = getchar();
      while (!isdigit(c) && c != '-') c = getchar();
      if (c == '-') w = 0, c = getchar();
      while (isdigit(c)) {
        x = (x<<1) + (x<<3) + c -'0';
        c = getchar();
      }
      if (!w) x = -x;
    }
    template <typename T>
    void Write(T x) {
      if (x < 0) {
        putchar('-');
        x = -x;
      }
      if (x > 9) Write(x / 10);
      putchar(x % 10 + '0');
    }
    //----------------------------------------------
    const int N = 1e3 + 10;
    const int CHARSET_SIZE = 26;
    struct Node {
      int ch[CHARSET_SIZE], fail;
      int id[110];
      Node() {}
      void clean() {
        fu(i, 0, CHARSET_SIZE - 1) ch[i] = 0;
        id[0] = fail = 0;
      }
    } p[N * N];
    int n, m, x, y, cnt;
    int res[N][N];
    char s[N][N], c[N][N];
    
    void init() {
      cnt = 1;
      p[0].clean(); p[1].clean();
      fu(i, 0, CHARSET_SIZE - 1) p[0].ch[i] = 1; 
    }
    
    void insert(char *c, int id) {
      int u = 1;
      fu(i, 1, y) {
        int tmp = c[i] - 'a';
        if (!p[u].ch[tmp])
          p[p[u].ch[tmp] = ++cnt].clean();
        u = p[u].ch[tmp];
      }
      p[u].id[++p[u].id[0]] = id;
    }
    
    void build_fail() {
      static queue<int> q;
      q.push(1);
      while (q.size()) {
        int u = q.front(); q.pop();
        fu(i, 0, CHARSET_SIZE - 1) {
          int w = p[u].ch[i], v = p[u].fail;
          while (!p[v].ch[i]) v = p[v].fail;
          v = p[v].ch[i];
          if (w) {
            p[w].fail = v;
            q.push(w);
          } else p[u].ch[i] = v;
        }
      }
    }
    
    void trans(char *c, int id) {
      int u = 1;
      fu(i, 1, m) {
        u = p[u].ch[c[i] - 'a'];
        fu(j, 1, p[u].id[0]) {
          if (id >= p[u].id[j])
            res[id - p[u].id[j] + 1][i]++;
        }
      }
    }
    
    void solve() {
      init();
      Read(n), Read(m);
      fu(i, 1, n) scanf("%s", s[i] + 1);
      Read(x), Read(y);
      fu(i, 1, x) {
        scanf("%s", c[i] + 1);
        insert(c[i], i);
      }
      build_fail();
      fu(i, 1, n) fu(j, 1, m) res[i][j] = 0;
      fu(i, 1, n) trans(s[i], i);
      int ans = 0;
      fu(i, 1, n) 
        fu(j, 1, m) if (res[i][j] == x) ++ans;
      Write(ans), putchar('
    ');
    }
    
    int main() {
    #ifdef dream_maker
      freopen("input.txt", "r", stdin);
    #endif
      int T; Read(T);
      while (T--) solve();
      return 0;
    }
    
  • 相关阅读:
    自动化测试之读取配置文件 | 踩坑指南
    文未有福利 | BAT 名企大厂做接口自动化如何高效使用 Requests ?
    高效能 Tester 必会的 Python 测试框架技巧
    移动自动化测试从入门到高级实战
    1 天,1000+ 测试工程师分享了这个课程 | 年度福利
    H5性能分析实战来啦~
    接口测试实战 | Android 高版本无法抓取 HTTPS,怎么办?
    实战 | 接口自动化测试框架开发(Pytest+Allure+AIOHTTP+用例自动生成)
    第一期线上沙龙PPT领取方式
    Java日志第48天 2020.8.24
  • 原文地址:https://www.cnblogs.com/dream-maker-yk/p/9906052.html
Copyright © 2020-2023  润新知