Description
我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。
Input
输入一行,包含4个空格分开的正整数,依次为N,K,L和H。
Output
输出一个整数,为所求方案数。
Sample Input
2 2 2 4
Sample Output
3
HINT
样例解释
所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)
对于100%的数据,1≤N,K≤109,1≤L≤H≤109,H-L≤10^5
思路
首先把l和r都除上k
这样就变成了选出n个数gcd是1的方案数
然后设(f(x))是选出gcd是x的方案数
(g(x))是选出gcd是x的倍数的方案数
有(g(x)=sum_{x|d}f(d))
然后可以反演成(f(x)=sum_{x|d}mu(d) imes g(d/x))
因为要求的是(f(1)),所以变成了(sum_{d=1}^{limit}mu(d) imes g(d))
然后就暴力枚举就可以了
//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
//typename
typedef long long ll;
//convenient for
#define fu(a, b, c) for (int a = b; a <= c; ++a)
#define fd(a, b, c) for (int a = b; a >= c; --a)
#define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
//inf of different typename
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
//fast read and write
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) {
x = (x<<1) + (x<<3) + c -'0';
c = getchar();
}
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 1e5 + 10;
const int Mod = 1e9 + 7;
int n, k, l, r;
int mu[N], prime[N], tot = 0;
bool vis[N];
int add(int a, int b) {
a += b;
if (a >= Mod) return a - Mod;
if (a < 0) return a + Mod;
return a;
}
int mul(int a, int b) {
return 1ll * a * b % Mod;
}
int fast_pow(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = mul(res, a);
b >>= 1;
a = mul(a, a);
}
return res;
}
void init() {
mu[1] = 1;
fu(i, 2, N - 1) {
if (!vis[i]) {
mu[i] = -1;
prime[++tot] = i;
}
fu(j, 1, tot) {
if (i * prime[j] >= N) break;
vis[i * prime[j]] = 1;
if (i % prime[j]) {
mu[i * prime[j]] = -mu[i];
} else {
mu[i * prime[j]] = 0;
break;
}
}
}
}
int calc(int vl) {
int len = r / vl - (l - 1) / vl;
return add(fast_pow(len, n), -len);
}
int main() {
init();
Read(n), Read(k), Read(l), Read(r);
l = (l - 1) / k + 1, r = r / k;
int res = (l == 1);
fu(i, 1, r - l)
res = add(res, mu[i] * calc(i));
Write(res);
return 0;
}