• Leetcode--Last Stone Weight II


    Last Stone Weight II

    欢迎关注H寻梦人公众号

    image-20210120103201067

    You are given an array of integers stones where stones[i] is the weight of the ith stone.

    We are playing a game with the stones. On each turn, we choose any two stones and smash them together. Suppose the stones have weights x and y with x <= y. The result of this smash is:

    If x == y, both stones are destroyed, and
    If x != y, the stone of weight x is destroyed, and the stone of weight y has new weight y - x.
    At the end of the game, there is at most one stone left.

    Return the smallest possible weight of the left stone. If there are no stones left, return 0.

    Example1:

    Input: stones = [2,7,4,1,8,1]
    Output: 1
    Explanation:
    We can combine 2 and 4 to get 2, so the array converts to [2,7,1,8,1] then,
    we can combine 7 and 8 to get 1, so the array converts to [2,1,1,1] then,
    we can combine 2 and 1 to get 1, so the array converts to [1,1,1] then,
    we can combine 1 and 1 to get 0, so the array converts to [1], then that's the optimal value.
    

    Example2:

    Input: stones = [31,26,33,21,40]
    Output: 5
    

    Example3:

    Input: stones = [1,2]
    Output: 1
    

    题目中文释义:

    image-20210608200124109

    题解:

    从上面题目的意思,其实我们可以转换一种角度来看待这个问题:

    这个题目实质上其实就是,将所有的石子分为两堆,求两堆石子的最小绝对值的问题,最理想的答案是两堆石子一样多,但实际上可能会有偏差;假定所有的石子和为sum, 那么最终的一堆石子中必定有一堆的石子总和<=sum/2的,并且我们让其最大化。

    因此,这个问题就可以转为背包为sum/2的01背包问题, 假定其值为dp[cap]
    那么,最终的结果为 sum - 2*dp[cap]
    证明:两堆石子的重量分别为x,y
    结果为:|x-y|
    假设x为其中较小的,那么结果为: y-x = (x+y)-2*x

    因此,这问题就出来了,如下:

    	
    	public int lastStoneWeightII(int[] stones) {
            int sum = 0;
            for (int stone : stones) {
                sum += stone;
            }
    
            int cap = sum / 2;
            int[] dp = new int[cap +1];
            for (int stone : stones) {
                for (int i = cap; i >= stone; i--) {
                    dp[i] = Math.max(dp[i],dp[i-stone]+stone);
                }
            }
    
            return sum - 2*dp[cap];
    
        }
    
  • 相关阅读:
    摩根斯坦利面试
    Interview Preparation IV
    Interview Preparation III
    Interview Preparation II
    Interview Preparation I
    ASCII Characters
    Java Serialization
    贝莱德伦敦分部面试
    SVG基本知识
    前端知识整理(四)【HTTP相关】
  • 原文地址:https://www.cnblogs.com/dream-it-possible/p/14864314.html
Copyright © 2020-2023  润新知