• 基于tensorflow的验证码识别


      基于tensorflow的验证码识别

    背景介绍:

    验证码图片样例: 

    python库: tensorflow, opencv, pandas, gpu机器。

    训练集: 10w 图片,  200step左右开始收敛。

    策略: 切分图片,训练单字母识别。预测时也是同样切分。(ps:不切分训练及识别,跑了一夜,没有收敛)

    准确率: 在区分大小写的情况下,单字母识别率98%, 整体识别率75%+。

    训练集生成代码(大部分验证码都是插件生成,尽量找到生成方式,不然标注会很费力):

    package com;
    import java.awt.Color;
    import java.io.File;
    import java.io.FileOutputStream;
    import java.io.IOException;
    import java.io.OutputStream;
    import java.util.Random;
    
    import org.patchca.color.ColorFactory;
    import org.patchca.filter.predefined.CurvesRippleFilterFactory;
    import org.patchca.filter.predefined.DiffuseRippleFilterFactory;
    import org.patchca.filter.predefined.DoubleRippleFilterFactory;
    import org.patchca.filter.predefined.MarbleRippleFilterFactory;
    import org.patchca.filter.predefined.WobbleRippleFilterFactory;
    import org.patchca.service.ConfigurableCaptchaService;
    import org.patchca.utils.encoder.EncoderHelper;
    import org.patchca.word.RandomWordFactory;
    
    public class CreatePatcha {
    	private static Random random = new Random();
    	private static ConfigurableCaptchaService cs = new ConfigurableCaptchaService();
    	static {
    		// cs.setColorFactory(new SingleColorFactory(new Color(25, 60, 170)));
    		cs.setColorFactory(new ColorFactory() {
    			@Override
    			public Color getColor(int x) {
    				int[] c = new int[3];
    				int i = random.nextInt(c.length);
    				for (int fi = 0; fi < c.length; fi++) {
    					if (fi == i) {
    						c[fi] = random.nextInt(71);
    					} else {
    						c[fi] = random.nextInt(256);
    					}
    				}
    				return new Color(c[0], c[1], c[2]);
    			}
    		});
    		RandomWordFactory wf = new RandomWordFactory();
    //		wf.setCharacters("23456789abcdefghigklmnpqrstuvwxyzABCDEFGHIGKLMNPQRSTUVWXYZ");
    		wf.setCharacters("0123456789abcdefghigklmnopqrstuvwxyzABCDEFGHIGKLMNOPQRSTUVWXYZ");
    		wf.setMaxLength(4);
    		wf.setMinLength(4);
    		
    		cs.setWordFactory(wf);
    	}
    
    	public static void main(String[] args) throws IOException {
    		for (int i = 0; i < 100; i++) {
    			switch (random.nextInt(5)) {
    			case 0:
    				cs.setFilterFactory(new CurvesRippleFilterFactory(cs
    						.getColorFactory()));
    				break;
    			case 1:
    				cs.setFilterFactory(new MarbleRippleFilterFactory());
    				break;
    			case 2:
    				cs.setFilterFactory(new DoubleRippleFilterFactory());
    				break;
    			case 3:
    				cs.setFilterFactory(new WobbleRippleFilterFactory());
    				break;
    			case 4:
    				cs.setFilterFactory(new DiffuseRippleFilterFactory());
    				break;
    			}
    
    			OutputStream out = new FileOutputStream(new File(i + ".png"));
    			String token = EncoderHelper.getChallangeAndWriteImage(cs, "png",
    					out);
    			out.close();
    			File f = new File(i+".png");
    			f.renameTo(new File("checkdata/" + token +"_" + i+".png"));
    			System.out.println(i+"验证码=" + token);
    		}
    	}
    }
    

      

    基于tf的神经网络训练代码(文件1读取训练集):

    #coding:utf-8
    # from captcha.image import ImageCaptcha  # pip install captcha
    import numpy as np
    import matplotlib.pyplot as plt
    from PIL import Image
    import random,time
    
    # 验证码中的字符, 就不用汉字了
    number = ['0','1','2','3','4','5','6','7','8','9']
    alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
    ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']
    global total_index
    total_index = 0
    global total_index_test
    total_index_test = 0
    import os.path
    
    testDir = "testchars_padding"
    trainDir = "trainchars_padding"
    
    fileList = os.listdir(trainDir)
    testFileList = os.listdir(testDir)
    # 验证码一般都无视大小写;验证码长度4个字符
    def random_captcha_text(char_set=number+alphabet+ALPHABET, captcha_size=4):
        captcha_text = []
        for i in range(captcha_size):
            c = random.choice(char_set)
            captcha_text.append(c)
        return captcha_text
    
    # 生成字符对应的验证码
    def gen_captcha_text_and_image(train=True):
    
        global total_index
        global total_index_test
        if train:
            dir = trainDir
            captcha_text = fileList[total_index][5:6]
            captcha_image = Image.open(dir + "/" + fileList[total_index]).convert("RGB")
            captcha_image = np.array(captcha_image)
            total_index = (total_index + 1) % len(fileList)
            if(total_index % 10000 == 0):
                print('total_index:%d' % (total_index))
        else:
            dir = testDir
            # print(total_index_test)
            captcha_text = testFileList[total_index_test][5:6]
            captcha_image = Image.open(dir + "/" + testFileList[total_index_test]).convert("RGB")
            captcha_image = np.array(captcha_image)
            total_index_test = (total_index_test + 1) % len(testFileList)
    
        return captcha_text, captcha_image

    基于tf的神经网络训练代码(文件2,模型及训练):

    
    
    #coding:utf-8
    from gen_captcha import gen_captcha_text_and_image
    from gen_captcha import number
    from gen_captcha import alphabet
    from gen_captcha import ALPHABET

    import numpy as np
    import tensorflow as tf
    import os

    os.environ["CUDA_VISIBLE_DEVICES"] = "0"

    text, image = gen_captcha_text_and_image()
    print("验证码图像channel:", image.shape) # (70, 160, 3)
    # 图像大小
    IMAGE_HEIGHT = 70
    IMAGE_WIDTH = 70
    MAX_CAPTCHA = len(text)
    print("验证码文本最长字符数", MAX_CAPTCHA) # 验证码最长4字符; 我全部固定为4,可以不固定. 如果验证码长度小于4,用'_'补齐

    # 把彩色图像转为灰度图像(色彩对识别验证码没有什么用)
    def convert2gray(img):
    if len(img.shape) > 2:
    gray = np.mean(img, -1)
    # 上面的转法较快,正规转法如下
    # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
    # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
    return gray
    else:
    return img

    """
    cnn在图像大小是2的倍数时性能最高, 如果你用的图像大小不是2的倍数,可以在图像边缘补无用像素。
    np.pad(image【,((2,3),(2,2)), 'constant', constant_values=(255,)) # 在图像上补2行,下补3行,左补2行,右补2行
    """

    # 文本转向量
    # char_set = number + alphabet + ALPHABET + ['_'] # 如果验证码长度小于4, '_'用来补齐
    char_set = number + alphabet + ALPHABET # 如果验证码长度小于4, '_'用来补齐
    CHAR_SET_LEN = len(char_set) #26*2+10+1=63
    def text2vec(text):
    text_len = len(text)
    if text_len > MAX_CAPTCHA:
    raise ValueError('验证码最长4个字符')

    vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)
    def char2pos(c):
    if c =='_':
    k = 62
    return k
    k = ord(c)-48
    if k > 9:
    k = ord(c) - 55
    if k > 35:
    k = ord(c) - 61
    if k > 61:
    raise ValueError('No Map')
    return k
    for i, c in enumerate(text):
    idx = i * CHAR_SET_LEN + char2pos(c)
    vector[idx] = 1
    return vector
    # 向量转回文本
    def vec2text(vec):
    char_pos = vec.nonzero()[0]
    text=[]
    for i, c in enumerate(char_pos):
    char_at_pos = i #c/63
    char_idx = c % CHAR_SET_LEN
    if char_idx < 10:
    char_code = char_idx + ord('0')
    elif char_idx <36:
    char_code = char_idx - 10 + ord('A')
    elif char_idx < 62:
    char_code = char_idx- 36 + ord('a')
    elif char_idx == 62:
    char_code = ord('_')
    else:
    raise ValueError('error')
    text.append(chr(char_code))
    return "".join(text)

    """
    #向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1编码 每63个编码一个字符,这样顺利有,字符也有
    vec = text2vec("F5Sd")
    text = vec2text(vec)
    print(text) # F5Sd
    vec = text2vec("SFd5")
    text = vec2text(vec)
    print(text) # SFd5
    """

    # 生成一个训练batch
    def get_next_batch(batch_size=128, train = True):
    batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH])
    batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN])

    # 有时生成图像大小不是(70, 160, 3)
    def wrap_gen_captcha_text_and_image(train):
    while True:
    text, image = gen_captcha_text_and_image(train)
    if image.shape == (70, 70, 3):
    return text, image

    for i in range(batch_size):
    text, image = wrap_gen_captcha_text_and_image(train)
    image = convert2gray(image)

    batch_x[i,:] = image.flatten() / 255 # (image.flatten()-128)/128 mean为0
    batch_y[i,:] = text2vec(text)

    return batch_x, batch_y

    ####################################################################

    X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WIDTH])
    Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN])
    keep_prob = tf.placeholder(tf.float32) # dropout

    # 定义CNN
    def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
    x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])

    #w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #
    #w_c2_alpha = np.sqrt(2.0/(3*3*32))
    #w_c3_alpha = np.sqrt(2.0/(3*3*64))
    #w_d1_alpha = np.sqrt(2.0/(8*32*64))
    #out_alpha = np.sqrt(2.0/1024)

    # 3 conv layer
    w_c1 = tf.Variable(w_alpha*tf.random_normal([3, 3, 1, 32]))
    b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))
    conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))
    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv1 = tf.nn.dropout(conv1, keep_prob)

    w_c2 = tf.Variable(w_alpha*tf.random_normal([3, 3, 32, 64]))
    b_c2 = tf.Variable(b_alpha*tf.random_normal([64]))
    conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))
    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv2 = tf.nn.dropout(conv2, keep_prob)

    w_c3 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))
    b_c3 = tf.Variable(b_alpha*tf.random_normal([64]))
    conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))
    conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    conv3 = tf.nn.dropout(conv3, keep_prob)

    # Fully connected layer
    w_d = tf.Variable(w_alpha*tf.random_normal([9*9*64, 1024]))
    b_d = tf.Variable(b_alpha*tf.random_normal([1024]))
    dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
    dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
    dense = tf.nn.dropout(dense, keep_prob)

    w_out = tf.Variable(w_alpha*tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN]))
    b_out = tf.Variable(b_alpha*tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN]))
    out = tf.add(tf.matmul(dense, w_out), b_out)
    #out = tf.nn.softmax(out)
    return out

    # 训练
    def train_crack_captcha_cnn():
    output = crack_captcha_cnn()
    # loss
    #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))
    with tf.device('/gpu:0'):
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=Y))
    # 最后一层用来分类的softmax和sigmoid有什么不同?
    # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰
    optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)

    predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
    max_idx_p = tf.argmax(predict, 2)
    max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
    correct_pred = tf.equal(max_idx_p, max_idx_l)
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

    saver = tf.train.Saver()
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
    sess.run(tf.global_variables_initializer())

    step = 0
    while True:
    batch_x, batch_y = get_next_batch(256)
    _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})


    # 每100 step计算一次准确率
    if step % 100 == 0:
    batch_x_test, batch_y_test = get_next_batch(100, False)
    acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})
    print('step:%d,loss:%g' % (step, loss_))
    print('step:%d,acc:%g'%(step, acc))
    # 如果准确率大于50%,保存模型,完成训练
    if acc > 0.98:
    saver.save(sess, "crack_capcha.model", global_step=step)
    break
    step += 1

    def crack_captcha(captcha_image):
    output = crack_captcha_cnn()

    saver = tf.train.Saver()
    with tf.Session() as sess:
    saver.restore(sess, tf.train.latest_checkpoint('.'))

    predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
    text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})

    text = text_list[0].tolist()
    vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)
    i = 0
    for n in text:
    vector[i*CHAR_SET_LEN + n] = 1
    i += 1
    return vec2text(vector)

    if __name__ == '__main__':

    #text, image = gen_captcha_text_and_image()
    #image = convert2gray(image)
    #image = image.flatten() / 255
    #predict_text = crack_captcha(image)
    #print("正确: {} 预测: {}".format(text, predict_text))
    train_crack_captcha_cnn()

     

    基于tf的神经网络训练代码(文件3,验证结果):

    #coding:utf-8
    import numpy as np
    import matplotlib.pyplot as plt
    from PIL import Image
    import random,time
    import tensorflow as tf
    import os.path
    import cv2
    from pandas import DataFrame
    from tensorflow_cnn import crack_captcha_cnn
    from tensorflow_cnn import X
    from tensorflow_cnn import Y
    from tensorflow_cnn import keep_prob
    from tensorflow_cnn import convert2gray
    
    os.environ["CUDA_VISIBLE_DEVICES"] = "3"
    number = ['0','1','2','3','4','5','6','7','8','9']
    alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
    ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']
    
    # 图像大小
    IMAGE_HEIGHT = 70
    IMAGE_WIDTH = 70
    MAX_CAPTCHA = 1
    char_set = number + alphabet + ALPHABET # 如果验证码长度小于4, '_'用来补齐
    CHAR_SET_LEN = len(char_set) #26*2+10+1=63
    
    def splitImage(item):
        img = cv2.imread(item, 0)
        retval, img_black = cv2.threshold(img, 250, 255, cv2.THRESH_BINARY)
        img_black = cv2.bitwise_not(img_black)
        # cv2.imwrite('../test'+item[:-4]+'_black'+item[-4:],img_black)
    
        img_black = DataFrame(img_black)
        img_black.ix[70] = img_black.sum() / 255
    
        numlist1 = [i + 25 for i in range(31)]
        numlist2 = [i + 65 for i in range(31)]
        numlist3 = [i + 105 for i in range(31)]
    
        def getpoint(ser, m):
    
            p = []
            if m == 0:
                for i in range(len(ser)):
                    if i in numlist1 and ser[i] <= m:
                        p.append(i)
    
                    if i in numlist2 and ser[i] <= m:
                        p.append(i)
    
                    if i in numlist3 and ser[i] <= m:
                        p.append(i)
            else:
                for i in range(len(ser)):
                    if i in numlist1 and ser[i - 1] <= m and ser[i] <= m and ser[i + 1] <= m:
                        p.append(i)
    
                    if i in numlist2 and ser[i - 1] <= m and ser[i] <= m and ser[i + 1] <= m:
                        p.append(i)
    
                    if i in numlist3 and ser[i - 1] <= m and ser[i] <= m and ser[i + 1] <= m:
                        p.append(i)
    
                try:
                    p1 = []
                    p2 = []
                    p3 = []
                    for i in p:
                        if i <= 60:
                            p1.append(i)
                        if i > 60 and i <= 100:
                            p2.append(i)
                        if i > 100:
                            p3.append(i)
                    s1 = p1[int(len(p1) / 2)]
                    s2 = p2[int(len(p2) / 2)]
                    s3 = p3[int(len(p3) / 2)]
                except:
                    s1, s2, s3 = 40, 80, 120
    
                return [s1, s2, s3]
    
        s = getpoint(img_black.ix[70], 0)
        if s == None:
            s = getpoint(img_black.ix[70], 8)
    
        img = cv2.imread(item)
    
        # img1 = Image.fromarray((img[:, 0:s[0], :]))
        # img2 = Image.fromarray((img[:, s[0]:s[1], :]))
        # img3 = Image.fromarray((img[:, s[1]:s[2], :]))
        # img4 = Image.fromarray((img[:, s[2]:, :]))
        img1 = (img[:, 0:s[0], :])
        img2 = (img[:, s[0]:s[1], :])
        img3 = (img[:, s[1]:s[2], :])
        img4 = (img[:, s[2]:, :])
        return [padding(img1), padding(img2), padding(img3), padding(img4)]
    
    def get_imlist(path):
        return [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.png')]
    def padding(img):
        # img = cv2.imread(item)
        base = np.zeros(4900 * 3).reshape((IMAGE_HEIGHT, IMAGE_WIDTH, 3))
        base += 255
        m = img.shape[1]
        start = int((70 - m) / 2)
        end = start + m
        base[:, start:end, :] = img
        return base
    # 向量转回文本
    def vec2text(vec):
        char_pos = vec.nonzero()[0]
        text=[]
        for i, c in enumerate(char_pos):
            char_at_pos = i #c/63
            char_idx = c % CHAR_SET_LEN
            if char_idx < 10:
                char_code = char_idx + ord('0')
            elif char_idx <36:
                char_code = char_idx - 10 + ord('A')
            elif char_idx < 62:
                char_code = char_idx-  36 + ord('a')
            elif char_idx == 62:
                char_code = ord('_')
            else:
                raise ValueError('error')
            text.append(chr(char_code))
        return "".join(text)
    
    if __name__ == '__main__':
    
        output = crack_captcha_cnn()
        saver = tf.train.Saver()
        with tf.Session() as sess:
            saver.restore(sess, tf.train.latest_checkpoint('.'))
            imglist = get_imlist('./data/')
            total = 0
            right = 0
            for item in imglist:
                print("*************************************: {}".format(item))
                imgs = splitImage(item)
                str = ""
                for img in imgs:
                    # image = Image.fromarray(img)
                    image = convert2gray(img)
                    image = image.flatten() / 255
                    predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
                    text_list = sess.run(predict, feed_dict={X: [image], keep_prob: 1})
    
                    text = text_list[0].tolist()
                    vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN)
                    i = 0
                    for n in text:
                        vector[i * CHAR_SET_LEN + n] = 1
                        i += 1
                    predict_text =  vec2text(vector)
                    str = str + predict_text
                total = total + 1
                if(str in item):
                    right = right + 1
                print("正确: {}  预测: {} 结果: {} 正确: {} 总数: {}".format(item, str, str in item, right, total))

    结果:

    参考:https://zhuanlan.zhihu.com/p/25779608?group_id=825335754321457152

  • 相关阅读:
    (算法)构造最大数
    (算法)扔棋子
    (智力题)头巾颜色
    (算法)和为0的最大连续子数组
    (算法)前K大的和
    (算法)两个有序数组的第k大的数
    (算法)旋转有序数组中查找某个数
    (算法)是否为二叉查找树的后序遍历数组
    [转]前淘宝工程师对12306的解读: 曾嗤之以鼻 现在认为几乎是奇迹
    关于英雄产品的一切 一个企业不仅仅要懂得如何做产品,也要去关心如何制定战略,打造品牌。
  • 原文地址:https://www.cnblogs.com/drawwindows/p/6900592.html
Copyright © 2020-2023  润新知