• Air Raid[HDU1151]


    Air Raid
    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 4974 Accepted Submission(s): 3347


    Problem Description
    Consider a town where all the streets are one-way and each street leads from one intersection to another. It is also known that starting from an intersection and walking through town's streets you can never reach the same intersection i.e. the town's streets form no cycles.

    With these assumptions your task is to write a program that finds the minimum number of paratroopers that can descend on the town and visit all the intersections of this town in such a way that more than one paratrooper visits no intersection. Each paratrooper lands at an intersection and can visit other intersections following the town streets. There are no restrictions about the starting intersection for each paratrooper.

     

    Input
    Your program should read sets of data. The first line of the input file contains the number of the data sets. Each data set specifies the structure of a town and has the format:

    no_of_intersections
    no_of_streets
    S1 E1
    S2 E2
    ......
    Sno_of_streets Eno_of_streets

    The first line of each data set contains a positive integer no_of_intersections (greater than 0 and less or equal to 120), which is the number of intersections in the town. The second line contains a positive integer no_of_streets, which is the number of streets in the town. The next no_of_streets lines, one for each street in the town, are randomly ordered and represent the town's streets. The line corresponding to street k (k <= no_of_streets) consists of two positive integers, separated by one blank: Sk (1 <= Sk <= no_of_intersections) - the number of the intersection that is the start of the street, and Ek (1 <= Ek <= no_of_intersections) - the number of the intersection that is the end of the street. Intersections are represented by integers from 1 to no_of_intersections.

    There are no blank lines between consecutive sets of data. Input data are correct.

     

    Output
    The result of the program is on standard output. For each input data set the program prints on a single line, starting from the beginning of the line, one integer: the minimum number of paratroopers required to visit all the intersections in the town.

     

    Sample Input
    2
    4
    3
    3 4
    1 3
    2 3
    3
    3
    1 3
    1 2
    2 3

    Sample Output
    2
    1

    最小路径覆盖=点数-最大匹配

    最大匹配可以用匈牙利算法来算,也能用最大流来算。

    #include <stdio.h>
    #include <string.h>
    // ALGORITHM_MAXFLOW_SAP ->
    
    #define ALGORITHM_MAXFLOW_SAP_MAXN 20010
    #define ALGORITHM_MAXFLOW_SAP_MAXM 880010
    #define ALGORITHM_MAXFLOW_SAP_INF 0x7FFFFFFF
    
    struct ALGORITHM_MAXFLOW_SAP_Node {
        int from, to, next;
        int cap;
    } ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_MAXM];
    int ALGORITHM_MAXFLOW_SAP_tol;
    int ALGORITHM_MAXFLOW_SAP_head[ALGORITHM_MAXFLOW_SAP_MAXN];
    int ALGORITHM_MAXFLOW_SAP_dep[ALGORITHM_MAXFLOW_SAP_MAXN];
    int ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_MAXN];
    int ALGORITHM_MAXFLOW_SAP_cur[ALGORITHM_MAXFLOW_SAP_MAXN];
    int ALGORITHM_MAXFLOW_SAP_S[ALGORITHM_MAXFLOW_SAP_MAXN];
    int ALGORITHM_MAXFLOW_SAP_que[ALGORITHM_MAXFLOW_SAP_MAXN];
    int ALGORITHM_MAXFLOW_SAP_n;
    
    void ALGORITHM_MAXFLOW_SAP_clear() {
        ALGORITHM_MAXFLOW_SAP_tol = 0;
        memset(ALGORITHM_MAXFLOW_SAP_head, -1, sizeof(ALGORITHM_MAXFLOW_SAP_head));
    }
    
    void ALGORITHM_MAXFLOW_SAP_addedge(int u, int v, int w) {
        ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].from = u;
        ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].to = v;
        ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].cap = w;
        ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].next = ALGORITHM_MAXFLOW_SAP_head[u];
        ALGORITHM_MAXFLOW_SAP_head[u] = ALGORITHM_MAXFLOW_SAP_tol++;
        ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].from = v;
        ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].to = u;
        ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].cap = 0;
        ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].next = ALGORITHM_MAXFLOW_SAP_head[v];
        ALGORITHM_MAXFLOW_SAP_head[v] = ALGORITHM_MAXFLOW_SAP_tol++;
    }
    void ALGORITHM_MAXFLOW_SAP_BFS(int start, int end) {
        memset(ALGORITHM_MAXFLOW_SAP_dep, -1, sizeof(ALGORITHM_MAXFLOW_SAP_dep));
        memset(ALGORITHM_MAXFLOW_SAP_gap, 0, sizeof(ALGORITHM_MAXFLOW_SAP_gap));
        ALGORITHM_MAXFLOW_SAP_gap[0] = 1;
        int front, rear;
        front = rear = 0;
        ALGORITHM_MAXFLOW_SAP_dep[end] = 0;
        ALGORITHM_MAXFLOW_SAP_que[rear++] = end;
        while(front != rear) {
            int u = ALGORITHM_MAXFLOW_SAP_que[front++];
            if(front == ALGORITHM_MAXFLOW_SAP_MAXN) {
                front = 0;
            }
            for(int i = ALGORITHM_MAXFLOW_SAP_head[u]; i != -1; i = ALGORITHM_MAXFLOW_SAP_edge[i].next) {
                int v = ALGORITHM_MAXFLOW_SAP_edge[i].to;
                if(ALGORITHM_MAXFLOW_SAP_dep[v] != -1) {
                    continue;
                }
                ALGORITHM_MAXFLOW_SAP_que[rear++] = v;
                if(rear == ALGORITHM_MAXFLOW_SAP_MAXN) {
                    rear = 0;
                }
                ALGORITHM_MAXFLOW_SAP_dep[v] = ALGORITHM_MAXFLOW_SAP_dep[u] + 1;
                ++ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_dep[v]];
            }
        }
    }
    int ALGORITHM_MAXFLOW_SAP_SAP(int start, int end) {
        int res = 0;
        ALGORITHM_MAXFLOW_SAP_BFS(start, end);
        int top = 0;
        memcpy(ALGORITHM_MAXFLOW_SAP_cur, ALGORITHM_MAXFLOW_SAP_head, sizeof(ALGORITHM_MAXFLOW_SAP_head));
        int u = start;
        int i;
        while(ALGORITHM_MAXFLOW_SAP_dep[start] < ALGORITHM_MAXFLOW_SAP_n) {
            if(u == end) {
                int temp = ALGORITHM_MAXFLOW_SAP_INF;
                int inser;
                for(i = 0; i < top; i++)
                    if(temp > ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[i]].cap) {
                        temp = ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[i]].cap;
                        inser = i;
                    }
                for(i = 0; i < top; i++) {
                    ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[i]].cap -= temp;
                    ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[i] ^ 1].cap += temp;
                }
                res += temp;
                top = inser;
                u = ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[top]].from;
            }
            if(u != end && ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_dep[u] - 1] == 0) {
                break;
            }
            for(i = ALGORITHM_MAXFLOW_SAP_cur[u]; i != -1; i = ALGORITHM_MAXFLOW_SAP_edge[i].next)
                if(ALGORITHM_MAXFLOW_SAP_edge[i].cap != 0 && ALGORITHM_MAXFLOW_SAP_dep[u] == ALGORITHM_MAXFLOW_SAP_dep[ALGORITHM_MAXFLOW_SAP_edge[i].to] + 1) {
                    break;
                }
            if(i != -1) {
                ALGORITHM_MAXFLOW_SAP_cur[u] = i;
                ALGORITHM_MAXFLOW_SAP_S[top++] = i;
                u = ALGORITHM_MAXFLOW_SAP_edge[i].to;
            } else {
                int min = ALGORITHM_MAXFLOW_SAP_n;
                for(i = ALGORITHM_MAXFLOW_SAP_head[u]; i != -1; i = ALGORITHM_MAXFLOW_SAP_edge[i].next) {
                    if(ALGORITHM_MAXFLOW_SAP_edge[i].cap == 0) {
                        continue;
                    }
                    if(min > ALGORITHM_MAXFLOW_SAP_dep[ALGORITHM_MAXFLOW_SAP_edge[i].to]) {
                        min = ALGORITHM_MAXFLOW_SAP_dep[ALGORITHM_MAXFLOW_SAP_edge[i].to];
                        ALGORITHM_MAXFLOW_SAP_cur[u] = i;
                    }
                }
                --ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_dep[u]];
                ALGORITHM_MAXFLOW_SAP_dep[u] = min + 1;
                ++ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_dep[u]];
                if(u != start) {
                    u = ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[--top]].from;
                }
            }
        }
        return res;
    }
    
    // <- ALGORITHM_MAXFLOW_SAP
    int main() {
        int T;
        scanf("%d", &T);
        while(T--) {
            ALGORITHM_MAXFLOW_SAP_clear();
            int n, m, a, b;
            scanf("%d%d", &n, &m);
            ALGORITHM_MAXFLOW_SAP_n = 2 + 2 * n;
            for(int i = 2; i <= n + 1; i++) {
                ALGORITHM_MAXFLOW_SAP_addedge(1, i, 1);;
            }
            for(int i = n + 2; i <= 2 * n + 1; i++) {
                ALGORITHM_MAXFLOW_SAP_addedge(i, 2 * n + 2, 1);
            }
            for(int i = 0; i < m; i++) {
                scanf("%d%d", &a, &b);
                ALGORITHM_MAXFLOW_SAP_addedge(a + 1, b + n + 1, 1000000);
            }
            int x = ALGORITHM_MAXFLOW_SAP_SAP(1, 2 * n + 2);
            printf("%d
    ", n - x);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    我喜欢网站
    我喜欢网站
    wpf Textbox 回车就换行
    wpf Textbox 回车就换行
    arguments.callee的用法
    与您分享
    Examples — guidata v1.5.1 documentation
    与您分享
    与您分享
    hierarchical clustering algorithms
  • 原文地址:https://www.cnblogs.com/dramstadt/p/6103212.html
Copyright © 2020-2023  润新知