• Eddy's problem partI


    Eddy's mistakes[HDU1161]

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 6014    Accepted Submission(s): 3405

     

    Problem Description
    Eddy usually writes articles ,but he likes mixing the English letter uses, for example "computer science" is written frequently "coMpUtEr scIeNce" by him, this mistakes lets Eddy's English teacher be extremely discontentment.Now please you to write a procedure to be able in the Bob article English letter to turn completely the small letter.
     

     

    Input
    The input contains several test cases.each line consists a test case,Expressed Eddy writes in an article , by letter, blank space,numeral as well as each kind of punctuation
    composition, the writing length does not surpass 1000 characters.
     

     

    Output
    For each test case, you should output an only line, after namely the result of transforms the lowercase letter.
     

     

    Sample Input
    weLcOmE tO HDOj Acm 2005!
     

     

    Sample Output
    welcome to hdoj acm 2005!
     

     

    Author
    eddy
     

     

    Recommend
    JGShining

    #include<stdio.h>
    #include<string.h>
    int main()
    {
        char str[2000];
        int n,i;
        while (gets(str))
        {
            int n=strlen(str);
            for (i=0;i<n;i++)
            if ('A'<=str[i] && str[i]<='Z')
                str[i]=str[i]-'A'+'a';
            puts(str);
        }
        return 0;
    }
    View Code

     

     

    Eddy's picture[HDU1162]

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 5245    Accepted Submission(s): 2601

     

    Problem Description
    Eddy begins to like painting pictures recently ,he is sure of himself to become a painter.Every day Eddy draws pictures in his small room, and he usually puts out his newest pictures to let his friends appreciate. but the result it can be imagined, the friends are not interested in his picture.Eddy feels very puzzled,in order to change all friends 's view to his technical of painting pictures ,so Eddy creates a problem for the his friends of you.
    Problem descriptions as follows: Given you some coordinates pionts on a drawing paper, every point links with the ink with the straight line, causes all points finally to link in the same place. How many distants does your duty discover the shortest length which the ink draws?
     

     

    Input
    The first line contains 0 < n <= 100, the number of point. For each point, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the point.

     

    Input contains multiple test cases. Process to the end of file.
     

     

    Output
    Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the points.
     

     

    Sample Input
    3
    1.0 1.0
    2.0 2.0
    2.0 4.0
     

     

    Sample Output
    3.41
     

     

    Author
    eddy
     

     

    Recommend
    JGShining

    #include<math.h>
    #include<stdio.h>
    #include<string.h>
    double x[125],y[125],dis[125][125],d[125];
    int N;
    bool s[125];
    double prim()
    {
        int i,j;
        for (i=1;i<=N;i++)
         for (j=1;j<=N;j++)
             dis[i][j]=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
        memset(s,0,sizeof(s));
        s[1]=true;
        d[1]=0;
        double ans=0;
        for (i=2;i<=N;i++) d[i]=dis[i][1];
        for (i=1;i<N;i++)
        {
            double Min=10000000000;
            int v;
            for (j=1;j<=N;j++)
            if (!s[j] && d[j]<Min)
            {
                Min=d[j];
                v=j;
            }
            s[v]=true;
            ans+=d[v];
            for (j=1;j<=N;j++)
            if (!s[j] && d[j]>dis[j][v]) d[j]=dis[j][v];
        }
        return ans;
    }
    int main()
    {
        int i;
        while (scanf("%d",&N)!=EOF)
        {
            for (i=1;i<=N;i++) scanf("%lf%lf",&x[i],&y[i]);
            printf("%.2lf
    ",prim());
        }
        return 0;
    }
    View Code

     

    Eddy's digital Roots[HDU1163]

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 3424    Accepted Submission(s): 1934

     

    Problem Description
    The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

     

    For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

     

    The Eddy's easy problem is that : give you the n,want you to find the n^n's digital Roots.
     

     

    Input
    The input file will contain a list of positive integers n, one per line. The end of the input will be indicated by an integer value of zero. Notice:For each integer in the input n(n<10000).
     

     

    Output
    Output n^n's digital root on a separate line of the output.
     

     

    Sample Input
    2
    4
    0
     

     

    Sample Output
    4
    4
     

     

    Author
    eddy
     

     

    Recommend
    JGShining

    For digital root there is a characteristic saying it will never change when plused or multiplied by 9.
    From this we can reason that R(A+B)=R(R(A)+R(B))and R(A*B)=R(R(A)*R(B)).It can be proved easily through see A as 9a+x,while B as 9b+y.

    #include<stdio.h>
    int R(int x)
    {
        int tmp=x,ans=0;
        if (x<10) return x;
        while (tmp)
        {
            ans+=tmp%10;
            tmp/=10;
        }
        return R(ans);
    }
    int pow(int x,int n)
    {
        if (n==0) return 1;
        if (n==1) return R(x);
        int tmp=pow(x,n/2);
        if (n&1) return R(tmp*tmp*x);
        else return R(tmp*tmp);
    }
    int main()
    {
        int n;
        while (scanf("%d",&n)!=EOF)
        {
            if (n<=0) return 0;
            printf("%d
    ",pow(R(n),n));
        }
        return 0;
    }
    View Code

     

     

     

    Eddy's research I[HDU1164]

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 4967    Accepted Submission(s): 2973

     

    Problem Description
    Eddy's interest is very extensive, recently he is interested in prime number. Eddy discover the all number owned can be divided into the multiply of prime number, but he can't write program, so Eddy has to ask intelligent you to help him, he asks you to write a program which can do the number to divided into the multiply of prime number factor .

     

     

     

    Input
    The input will contain a number 1 < x<= 65535 per line representing the number of elements of the set.
     

     

    Output
    You have to print a line in the output for each entry with the answer to the previous question.
     

     

    Sample Input
    11
    9412
     

     

    Sample Output
    11
    2*2*13*181
     

     

    Author
    eddy
     

     

    Recommend
    JGShining

    #include<stdio.h>
    #include<string.h>
    int p[65536];
    bool f[70000];
    int n,T;
    void getprime()
    {
        int i,j;
        memset(f,true,sizeof(f));
        for (i=2;i<65536;i++)
        if (f[i])
            for (j=i+i;j<65536;j+=i) f[j]=false;
        for (i=2;i<65536;i++)
        if (f[i])
        {
            T++;
            p[T]=i;
        }
    }
    int main()
    {
        getprime();
        while (scanf("%d",&n)!=EOF)
        {
            int i;
            for (i=1;i<=T;i++)
            if (n%p[i]==0)
            {
                while (n%p[i]==0)
                {
                    printf("%d",p[i]);
                    n/=p[i];
                    if (n>1) printf("*");
                }
            }
            printf("
    ");
        }
        return 0;
    }
    View Code

     

     

    Eddy's research II[HDU1165]

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 2502    Accepted Submission(s): 911

     

    Problem Description
    As is known, Ackermann function plays an important role in the sphere of theoretical computer science. However, in the other hand, the dramatic fast increasing pace of the function caused the value of Ackermann function hard to calcuate.

     

    Ackermann function can be defined recursively as follows:

     


    Now Eddy Gives you two numbers: m and n, your task is to compute the value of A(m,n) .This is so easy problem,If you slove this problem,you will receive a prize(Eddy will invite you to hdu restaurant to have supper).
     

     

    Input
    Each line of the input will have two integers, namely m, n, where 0 < m < =3.
    Note that when m<3, n can be any integer less than 1000000, while m=3, the value of n is restricted within 24.
    Input is terminated by end of file.
     

     

    Output
    For each value of m,n, print out the value of A(m,n).
     

     

    Sample Input
    1 3
    2 4
     

     

    Sample Output
    5
    11
     

     

    Author
    eddy
     

     

    Recommend
    JGShining

    The crazy increasing of Ackermann function is from its uncountable recursive call.So if you want to calculate it just as how it comes to you,I sure your program will stackoverflow.
    In this question ,m is limited within 3,which gives us a chance to get the formula of Ackermann function when m equals between 0 and 3.
    /*A(1,0)=A(0,1)=2
    A(1,x)=A(0,A(1,x-1))=A(1,x-1)+1
    #A(1,x)=x+2
    A(2,0)=A(1,1)=3
    A(2,x)=A(1,A(2,x-1))=A(2,x-1)+2
    #A(2,x)=2x+3
    A(3,0)=A(2,1)=5
    #A(3,x)=A(2,A(3,x-1))=2A(3,x-1)+3*/

    #include<stdio.h>
    int Ackermann(int m,int n)
    {
        if (m==0) return n+1;
        if (m==1) return n+2;
        if (m==2) return 2*n+3;
        if (m==3 && n==0) return 5;
        return 2*Ackermann(m,n-1)+3;
    }
    int main()
    {
        int m,n;
        while (scanf("%d%d",&m,&n)!=EOF) printf("%d
    ",Ackermann(m,n));
        return 0;
    }
    View Code

     

     

    Eddy's 洗牌问题[HDU1210]

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 2636    Accepted Submission(s): 1740

     

    Problem Description
    Eddy是个ACMer,他不仅喜欢做ACM题,而且对于纸牌也有一定的研究,他在无聊时研究发现,如果他有2N张牌,编号为1,2,3..n,n+1,..2n。这也是最初的牌的顺序。通过一次洗牌可以把牌的序列变为n+1,1,n+2,2,n+3,3,n+4,4..2n,n。那么可以证明,对于任意自然数N,都可以在经过M次洗牌后第一次重新得到初始的顺序。编程对于小于100000的自然数N,求出M的值。
     

     

    Input
    每行一个整数N
     

     

    Output
    输出与之对应的M
     

     

    Sample Input
    20
    1
     

     

    Sample Output
    20
    2
     

     

    Author
    Eddy
     

     

    Source
    杭电ACM省赛集训队选拔赛之热身赛
     

     

    Recommend
    Eddy

    #include<stdio.h>
    int main()
    {
        int N;
        while (scanf("%d",&N)!=EOF)
        {
            int R=2,T=1;
            while (R!=1)
            {
                if (R<=N) R*=2;
                else R=(R*2-1)%(2*N);
                T++;
            }
            printf("%d
    ",T);
        }
        return 0;
    }
    View Code

     

     

    Eddy's AC难题[HDU2200]

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2940    Accepted Submission(s): 1380

     

    Problem Description
    Eddy是个ACMer,他不仅喜欢做ACM题,而且对于Ranklist中每个人的ac数量也有一定的研究,他在无聊时经常在纸上把Ranklist上每个人的ac题目的数量摘录下来,然后从中选择一部分人(或者全部)按照ac的数量分成两组进行比较,他想使第一组中的最小ac数大于第二组中的最大ac数,但是这样的情况会有很多,聪明的你知道这样的情况有多少种吗?

     

    特别说明:为了问题的简化,我们这里假设摘录下的人数为n人,而且每个人ac的数量不会相等,最后结果在64位整数范围内.
     

     

    Input
    输入包含多组数据,每组包含一个整数n,表示从Ranklist上摘录的总人数。
     

     

    Output
    对于每个实例,输出符合要求的总的方案数,每个输出占一行。
     

     

    Sample Input
    2
    4
     

     

    Sample Output
    1
    17
     

     

    Author
    Eddy
     

     

    Recommend
    lcy

    #include<stdio.h>
    __int64 s[64],d[64];
    void init()
    {
        int i;
        s[0]=1;
        for (i=1;i<64;i++) s[i]=s[i-1]<<1;
        d[0]=0;d[1]=0;d[2]=1;
        for (i=3;i<64;i++) d[i]=2*d[i-1]+s[i-1]-1;
    }
    int main()
    {
        init();
        int N;
        while (scanf("%d",&N)!=EOF) printf("%I64d
    ",d[N]);
        return 0;
    }
    View Code

     

     

     

    Eddy's爱好[HDU2204]

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1090    Accepted Submission(s): 473

     

    Problem Description
    Ignatius 喜欢收集蝴蝶标本和邮票,但是Eddy的爱好很特别,他对数字比较感兴趣,他曾经一度沉迷于素数,而现在他对于一些新的特殊数比较有兴趣。
    这些特殊数是这样的:这些数都能表示成M^K,M和K是正整数且K>1。
    正当他再度沉迷的时候,他发现不知道什么时候才能知道这样的数字的数量,因此他又求助于你这位聪明的程序员,请你帮他用程序解决这个问题。
    为了简化,问题是这样的:给你一个正整数N,确定在1到N之间有多少个可以表示成M^K(K>1)的数。
     

     

    Input
    本题有多组测试数据,每组包含一个整数N,1<=N<=1000000000000000000(10^18).
     

     

    Output
    对于每组输入,请输出在在1到N之间形式如M^K的数的总数。
    每组输出占一行。
     

     

    Sample Input
    10
    36
    1000000000000000000
     

     

    Sample Output
    4
    9
    1001003332
     

     

    Author
    Eddy
     

     

    Recommend
    lcy

     

    #include<math.h>
    #include<stdio.h>
    int p[20]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59};
    int main()
    {
        double N;
        while (scanf("%lf",&N)!=EOF)
        {
            __int64 ans=0;
            int i,j;
            for (i=0;i<17;i++) 
            {
                int m=(int)pow(N,1.0/p[i]);
                while (pow(m+1,p[i])<=N) m++;
                ans+=m-1;
            }
            for (i=0;i<10;i++)
             for (j=i+1;j<10;j++)
             if (p[i]*p[j]<60)
             {
                 int m=(int)pow(N,1.0/(p[i]*p[j]));
                 while (pow(m+1,p[i]*p[j])<=N) m++;
                 ans-=m-1;
             }
            if(N>=pow(2,30))ans++;
            if(N>=pow(2,42))ans++;
            if(N>=pow(3,30))ans++;
            printf("%I64d
    ",ans+1);
        }
        return 0;
    }
    View Code

     

     

     

  • 相关阅读:
    C++---继承和派生
    【解迷糊】关于PHP的extract()函数提取出的变量的作用域问题
    PHP常用内置函数记忆(持更)
    PHP数据类型转换
    在window把自己的项目上传到github
    github Desktop上传项目
    【终于明白】PHP加入命名空间的好处--方便自动加载
    PHP中session的使用方法和生命周期问题
    php
    PHP中include和require的区别详解
  • 原文地址:https://www.cnblogs.com/dramstadt/p/3205279.html
Copyright © 2020-2023  润新知