A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
思路:可能是因为已经知道要用动态规划了,做起来特别顺,一次AC。
设m=5,n=4, 在二维格子里,最上面一行和最左边一行的可以到达的方式都只有1. 其他格子里的只要把它上边和左边的次数加起来就好了。
0 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20
1 5 15 35
如上,那么5*4的格子有35种走法。
class Solution { public: int uniquePaths(int m, int n) { vector<vector<int>> ways(m, vector<int>(n,1)); for(int i = 1; i < m; i++) { for(int j = 1; j < n; j++) { ways[i][j] = ways[i - 1][j] + ways[i][j - 1]; } } return ways[m - 1][n - 1]; } };