• 【leetcode】Best Time to Buy and Sell 3 (hard) 自己做出来了 但别人的更好


    Say you have an array for which the ith element is the price of a given stock on day i.

    Design an algorithm to find the maximum profit. You may complete at most two transactions.

    Note:
    You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

    思路:

    方案一:两次交易,得到最大收入。 设原本有length个数据,用n把数据分为[0 ~ n-1] 和 [n ~ length-1]两个部分,分别求最大收入,再加起来。结果超时了。

    方案二:设数据是                        0  2  1  4  2  4  7 

    求后一个数字和前一个数字的差值:   2 -1  3  -2  2  3

    把连续符合相同的数累加                 2 -1  3  -2   5

    这样处理后,假设有m个数据, 用n把数据分为[0 ~ n-1] 和 [n ~ m-1]两个部分, 分别求两个部分的最大连续子段和。

    由于经过预处理,数据变少了很多,所以就AC了。

    int maxProfit3(vector<int> &prices) {
            if(prices.size() < 2)
            {
                return 0;
            }
    
            //第一步:把prices中的数 两两间的差值算出来 把差值符号相同的加在一起
            vector<int> dealPrices;
            vector<int>::iterator it;
            int last = prices[0];
            int current;
            int sumNum = 0;
            for(it = prices.begin() + 1; it < prices.end(); it++)
            {
                current = *it;
                if((current - last >= 0 && sumNum >= 0) || (current - last <= 0 && sumNum <= 0))
                {
                    sumNum += current - last;
                }
                else
                {
                    dealPrices.push_back(sumNum);
                    sumNum = current - last;
                }
                last = current;
            }
            if(sumNum != 0)
            {
                dealPrices.push_back(sumNum);
            }
    
    
            //第二步
            if(dealPrices.size() == 1)
            {
                return dealPrices[0] > 0 ? dealPrices[0] : 0;
            }
            else
            {
                int maxprofit = 0;
                for(int n = 1; n < dealPrices.size(); n++)
                {
                    //求前半段最大连续子段和
                    int maxSum1 = 0;
                    int maxSum2 = 0;
                    int curSum = 0;
                    for(int i = 0; i < n; i++)
                    {
                        curSum = (curSum > 0) ? curSum + dealPrices[i] : dealPrices[i];
                        maxSum1 = (curSum > maxSum1) ? curSum : maxSum1;
                    }
    
                    //求后半段最大连续子段和
                    curSum = 0;
                    for(int i = n; i < dealPrices.size(); i++)
                    {
                        curSum = (curSum > 0) ? curSum + dealPrices[i] : dealPrices[i];
                        maxSum2 = (curSum > maxSum2) ? curSum : maxSum2;
                    }
    
                    if(maxSum1 + maxSum2 > maxprofit)
                    {
                        maxprofit = maxSum1 + maxSum2;
                    }
                }
                return maxprofit;
            }

    虽然我的AC了,但实际上还是个O(N^2)的算法,来看看大神们的O(N)代码。

    第一种:https://oj.leetcode.com/discuss/14806/solution-sharing-commented-code-o-n-time-and-o-n-space

    用两个数组left[],right[].

    left记录当前值减去它前面的最小值的结果

    right记录 当前值后面的最大值减去当前值的结果

    把 left[i]+right[i+1] 针对所有的i遍历一遍 得到最大的值就是答案

    public class Solution {
        public int maxProfit(int[] prices) {
            if (prices.length < 2) return 0;//one of zero days, cannot sell
            // break the problem in to subproblems, what is the max profit if i decide to buy and sell one stock on or before day i
            // and the other stock after day i
    
            int[] left = new int[prices.length];//store the max profit so far for day [0,i] for i from 0 to n
            int[] right = new int[prices.length];//store the max profit so far for the days [i,n] for i from 0 to n
            int minl,maxprofit,maxr,profit;
            maxprofit = 0;//lower bound on profit
            minl = Integer.MAX_VALUE;//minimum price so far for populating left array
            for(int i = 0; i < left.length; i++){
                if (prices[i] < minl) minl = prices[i];//check if this price is the minimum price so far
                profit = prices[i] - minl;//get the profit of selling at current price having bought at min price so far
                if (profit > maxprofit) maxprofit = profit;//if the profit is greater than the profit so far, update the max profit
                left[i] = maxprofit;
            }
            maxprofit = 0;//reset maxprofit to its lower bound
            maxr = Integer.MIN_VALUE;//maximum price so far for populating the right array
            //same line of reasoning as the above
            for(int i = left.length - 1; i >= 0; i--){
                if (prices[i] > maxr) maxr = prices[i];
                profit = maxr - prices[i];
                if (profit > maxprofit) maxprofit = profit;
                right[i] = maxprofit;
            }
            //get the best by combining the subproblems as described above
            int best = 0;
            for(int i = 0; i < prices.length - 1; i++){
                if (left[i] + right[i+1] > best) best = left[i] + right[i+1];
            }
            best = best > maxprofit ? best : maxprofit;
            // in total 3 passes required and 2 extra arrays of size n
            return best;
    
        }
    }

    第二种:更厉害,泛化到了k次交易的情况 而且代码特别短

    https://oj.leetcode.com/discuss/15153/a-clean-dp-solution-which-generalizes-to-k-transactions

    class Solution {
    public:
        int maxProfit(vector<int> &prices) {
            // f[k, ii] represents the max profit up until prices[ii] (Note: NOT ending with prices[ii]) using at most k transactions. 
            // f[k, ii] = max(f[k, ii-1], prices[ii] - prices[jj] + f[k-1, jj]) { jj in range of [0, ii-1] }
            //          = max(f[k, ii-1], prices[ii] + max(f[k-1, jj] - prices[jj]))
            // f[0, ii] = 0; 0 times transation makes 0 profit
            // f[k, 0] = 0; if there is only one price data point you can't make any money no matter how many times you can trade
            if (prices.size() <= 1) return 0;
            else {
                int K = 2; // number of max transation allowed
                int maxProf = 0;
                vector<vector<int>> f(K+1, vector<int>(prices.size(), 0));
                for (int kk = 1; kk <= K; kk++) {
                    int tmpMax = f[kk-1][0] - prices[0];
                    for (int ii = 1; ii < prices.size(); ii++) {
                        f[kk][ii] = max(f[kk][ii-1], prices[ii] + tmpMax);
                        tmpMax = max(tmpMax, f[kk-1][ii] - prices[ii]);
                        maxProf = max(f[kk][ii], maxProf);
                    }
                }
                return maxProf;
            }
        }
    };
  • 相关阅读:
    kubernetes获取Pod内容器信息
    etcd空间配额2G限制优化
    kubernetes集群之GC处理
    kubernetes之statefulset控制器介绍
    基于MySQL Binlog的Elasticsearch数据同步实践
    Nacos
    Python最佳工程实践,建立一个完美的工程项目
    图数据库的内部结构 (NEO4j)
    5个用/不用GraphQL的理由
    Neo4J 查找两节点之间的路径
  • 原文地址:https://www.cnblogs.com/dplearning/p/4113147.html
Copyright © 2020-2023  润新知