红黑树性质
1、每个结点或是红色的,或是黑色的
2、根节点是黑色的
3、每个叶结点(NIL)是黑色的
4、如果一个节点是红色的,则它的两个儿子都是黑色的。
5、对于每个结点,从该结点到其叶子结点构成的所有路径上的黑结点个数相同。
和AVL树的比较
AVL树是一棵严格的平衡树,它所有的子树都满足二叉平衡树的定义。因此AVL树高被严格控制在XXX,因此AVL树的查找比较高效。但AVL树插入、删除结点后旋转的次数比红黑树多。
红黑树用非严格的平衡来降低插入删除时旋转的次数。
因此,如果你的业务中查找远远多于插入、删除,那选AVL树;
如果查找、插入、删除频率差不多,那么选择红黑树。
插入过程
默认插入的结点为红色。为何?
因为红黑树中黑节点至少是红节点的两倍,因此插入节点的父节点为黑色的概率较大,而此时并不需要作任何调整,因此效率较高。
1. 父为黑
插入后无需任何操作。由于黑节点个数至少为红节点的两倍,因此父为黑的情况较多,而这种情况在插入后无需任何调整,这就是红黑树比AVL树插入效率高的原因!
2. 父为红
父为红的情况破坏了红黑树的性质,此时需要根据叔叔的颜色来做不同的处理。
1.叔叔为红
此时很简单,只需交换爸爸、叔叔和爷爷的颜色即可。
此时若爷爷节点和太爷爷节点颜色相同,再以爷爷节点为起始节点,进行刚才相同的操作,即:根据爷爷的兄弟颜色做相应的操作。
2.叔叔为黑
此时较为复杂,分如下四种情况:
a)爸爸在左、叔叔在右、我在左
以爸爸为根节点,进行一次R旋转。
b)爸爸在左、叔叔在右、我在右
先以我为根节点,进行一次L旋转;
再以我为根节点,进行一次R旋转。
c)叔叔在左、爸爸在右、我在左
先以我为根节点,进行一次R旋转;
再以我为根节点,进行一次L旋转。
d)叔叔在左、爸爸在右、我在右
以爸爸为根节点,进行一次L旋转。
先暂时到这里吧 红黑树感觉恶心心
————————————————
版权声明:本文为CSDN博主「rainyday66」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_34173549/article/details/79636764