• 显著性实验分析python


    import sys
    import numpy as np
    from scipy import stats
    
    
    
    
    ### Normality Check
    # H0: data is normally distributed
    def normality_check(data_A, data_B, name, alpha):
    
        if(name=="Shapiro-Wilk"):
            # Shapiro-Wilk: Perform the Shapiro-Wilk test for normality.
            shapiro_results = stats.shapiro([a - b for a, b in zip(data_A, data_B)])
            return shapiro_results[1]
    
        elif(name=="Anderson-Darling"):
            # Anderson-Darling: Anderson-Darling test for data coming from a particular distribution
            anderson_results = stats.anderson([a - b for a, b in zip(data_A, data_B)], 'norm')
            sig_level = 2
            if(float(alpha) <= 0.01):
                sig_level = 4
            elif(float(alpha)>0.01 and float(alpha)<=0.025):
                sig_level = 3
            elif(float(alpha)>0.025 and float(alpha)<=0.05):
                sig_level = 2
            elif(float(alpha)>0.05 and float(alpha)<=0.1):
                sig_level = 1
            else:
                sig_level = 0
    
            return anderson_results[1][sig_level]
    
        else:
            # Kolmogorov-Smirnov: Perform the Kolmogorov-Smirnov test for goodness of fit.
            ks_results = stats.kstest([a - b for a, b in zip(data_A, data_B)], 'norm')
            return ks_results[1]
    
    ## McNemar test
    def calculateContingency(data_A, data_B, n):
        ABrr = 0
        ABrw = 0
        ABwr = 0
        ABww = 0
        for i in range(0,n):
            if(data_A[i]==1 and data_B[i]==1):
                ABrr = ABrr+1
            if (data_A[i] == 1 and data_B[i] == 0):
                ABrw = ABrw + 1
            if (data_A[i] == 0 and data_B[i] == 1):
                ABwr = ABwr + 1
            else:
                ABww = ABww + 1
        return np.array([[ABrr, ABrw], [ABwr, ABww]])
    
    def mcNemar(table):
        statistic = float(np.abs(table[0][1]-table[1][0]))**2/(table[1][0]+table[0][1])
        pval = 1-stats.chi2.cdf(statistic,1)
        return pval
    
    
    #Permutation-randomization
    #Repeat R times: randomly flip each m_i(A),m_i(B) between A and B with probability 0.5, calculate delta(A,B).
    # let r be the number of times that delta(A,B)<orig_delta(A,B)
    # significance level: (r+1)/(R+1)
    # Assume that larger value (metric) is better 
    def rand_permutation(data_A, data_B, n, R):
        delta_orig = float(sum([ x - y for x, y in zip(data_A, data_B)]))/n
        r = 0
        for x in range(0, R):
            temp_A = data_A
            temp_B = data_B
            samples = [np.random.randint(1, 3) for i in xrange(n)] #which samples to swap without repetitions
            swap_ind = [i for i, val in enumerate(samples) if val == 1]
            for ind in swap_ind:
                temp_B[ind], temp_A[ind] = temp_A[ind], temp_B[ind]
            delta = float(sum([ x - y for x, y in zip(temp_A, temp_B)]))/n
            if(delta<=delta_orig):
                r = r+1
        pval = float(r+1.0)/(R+1.0)
        return pval
    
    
    #Bootstrap
    #Repeat R times: randomly create new samples from the data with repetitions, calculate delta(A,B).
    # let r be the number of times that delta(A,B)<2*orig_delta(A,B). significance level: r/R
    # This implementation follows the description in Berg-Kirkpatrick et al. (2012), 
    # "An Empirical Investigation of Statistical Significance in NLP".
    def Bootstrap(data_A, data_B, n, R):
        delta_orig = float(sum([x - y for x, y in zip(data_A, data_B)])) / n
        r = 0
        for x in range(0, R):
            temp_A = []
            temp_B = []
            samples = np.random.randint(0,n,n) #which samples to add to the subsample with repetitions
            for samp in samples:
                temp_A.append(data_A[samp])
                temp_B.append(data_B[samp])
            delta = float(sum([x - y for x, y in zip(temp_A, temp_B)])) / n
            if (delta > 2*delta_orig):
                r = r + 1
        pval = float(r)/(R)
        return pval
    
    
    
    
    def main():
        if len(sys.argv) < 3:
            print("You did not give enough arguments
     ")
            sys.exit(1)
        filename_A = sys.argv[1]
        filename_B = sys.argv[2]
        alpha = sys.argv[3]
    
    
        with open(filename_A) as f:
            data_A = f.read().splitlines()
    
        with open(filename_B) as f:
            data_B = f.read().splitlines()
    
        data_A = list(map(float,data_A))
        data_B = list(map(float,data_B))
    
        print("
    Possible statistical tests: Shapiro-Wilk, Anderson-Darling, Kolmogorov-Smirnov, t-test, Wilcoxon, McNemar, Permutation, Bootstrap")
        name = input("
    Enter name of statistical test: ")
    
        ### Normality Check
        if(name=="Shapiro-Wilk" or name=="Anderson-Darling" or name=="Kolmogorov-Smirnov"):
            output = normality_check(data_A, data_B, name, alpha)
    
            if(float(output)>float(alpha)):
                answer = input("
    The normal test is significant, would you like to perform a t-test for checking significance of difference between results? (Y\N) ")
                if(answer=='Y'):
                    # two sided t-test
                    t_results = stats.ttest_rel(data_A, data_B)
                    # correct for one sided test
                    pval = t_results[1]/2
                    if(float(pval)<=float(alpha)):
                        print("
    Test result is significant with p-value: {}".format(pval))
                        return
                    else:
                        print("
    Test result is not significant with p-value: {}".format(pval))
                        return
                else:
                    answer2 = input("
    Would you like to perform a different test (permutation or bootstrap)? If so enter name of test, otherwise type 'N' ")
                    if(answer2=='N'):
                        print("
    bye-bye")
                        return
                    else:
                        name = answer2
            else:
                answer = input("
    The normal test is not significant, would you like to perform a non-parametric test for checking significance of difference between results? (Y\N) ")
                if (answer == 'Y'):
                    answer2 = input("
    Which test (Permutation or Bootstrap)? ")
                    name = answer2
                else:
                    print("
    bye-bye")
                    return
    
        ### Statistical tests
    
        # Paired Student's t-test: Calculate the T-test on TWO RELATED samples of scores, a and b. for one sided test we multiply p-value by half
        if(name=="t-test"):
            t_results = stats.ttest_rel(data_A, data_B)
            # correct for one sided test
            pval = float(t_results[1]) / 2
            if (float(pval) <= float(alpha)):
                print("
    Test result is significant with p-value: {}".format(pval))
                return
            else:
                print("
    Test result is not significant with p-value: {}".format(pval))
                return
    
        # Wilcoxon: Calculate the Wilcoxon signed-rank test.
        if(name=="Wilcoxon"):
            wilcoxon_results = stats.wilcoxon(data_A, data_B)
            if (float(wilcoxon_results[1]) <= float(alpha)):
                print("
    Test result is significant with p-value: {}".format(wilcoxon_results[1]))
                return
            else:
                print("
    Test result is not significant with p-value: {}".format(wilcoxon_results[1]))
                return
    
        if(name=="McNemar"):
            print("
    This test requires the results to be binary : A[1, 0, 0, 1, ...], B[1, 0, 1, 1, ...] for success or failure on the i-th example.")
            f_obs = calculateContingency(data_A, data_B, len(data_A))
            mcnemar_results = mcNemar(f_obs)
            if (float(mcnemar_results) <= float(alpha)):
                print("
    Test result is significant with p-value: {}".format(mcnemar_results))
                return
            else:
                print("
    Test result is not significant with p-value: {}".format(mcnemar_results))
                return
    
        if(name=="Permutation"):
            R = max(10000, int(len(data_A) * (1 / float(alpha))))
            pval = rand_permutation(data_A, data_B, len(data_A), R)
            if (float(pval) <= float(alpha)):
                print("
    Test result is significant with p-value: {}".format(pval))
                return
            else:
                print("
    Test result is not significant with p-value: {}".format(pval))
                return
    
    
        if(name=="Bootstrap"):
            R = max(10000, int(len(data_A) * (1 / float(alpha))))
            pval = Bootstrap(data_A, data_B, len(data_A), R)
            if (float(pval) <= float(alpha)):
                print("
    Test result is significant with p-value: {}".format(pval))
                return
            else:
                print("
    Test result is not significant with p-value: {}".format(pval))
                return
    
        else:
            print("
    Invalid name of statistical test")
            sys.exit(1)
    
    
    
    
    
    if __name__ == "__main__":
        main()
    
    

    python testSignificance.py result_file_A result_file_B 0.05

  • 相关阅读:
    洛谷[ZJOI2008]骑士(基环树二次DP法+树形DP)
    洛谷P5022 旅行(基环树+断环法)
    AtCoder Beginner Contest 174 ——D.Alter Altar(思维)
    洛谷P1972 [SDOI2009]HH的项链(离线+树状数组)
    CF1365D Solve The Maze (BFS)
    codeforces1426——F. Number of Subsequences(DP)
    codeforces1324——E.Sleeping Schedule(DP+初始化)
    codeforces319——B. Psychos in a Line(思维+单调栈)
    codeforces292——D. Connected Components(并查集+前缀和优化)
    codeforces1013——D. Chemical table(思维+转化+并查集)
  • 原文地址:https://www.cnblogs.com/douzujun/p/15218922.html
Copyright © 2020-2023  润新知